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Abstract. The GPU has proven to be a powerful processor to compute spring-mass 

based surgical simulations. It has not previously been shown however, how to 

effectively implement haptic interaction with a simulation running entirely on the 

GPU. This paper describes a method to calculate haptic feedback with limited 

performance cost. It allows easy balancing of the GPU workload between 

calculations of simulation, visualisation, and the haptic feedback. 
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Introduction 

Surgical simulators have traditionally 

been implemented on the CPU and many 

algorithms have been proposed in order to 

calculate realistically looking soft-tissue 

deformations in real-time. An overview of 

the field is provided in [1]. Haptic 

feedback is often used to increase the 

realism of user interactions. This provides 

an additional challenge as force feedback 

must be provided at least at 500 Hz to feel 

smooth. To achieve such an update rate 

from a simulation running at a much 

lower frequency, extrapolation schemes 

have been developed, e.g. [2,3]. Overall, 

speed has been a major concern as many time-consuming tasks all had to be handled on 

the CPU. Motivated by this issue, it was shown in [4] that a twenty to thirty fold 

acceleration of a spring-mass based surgical simulation could be achieved when moving 

computations from the CPU to the GPU (i.e. the graphics card). This allowed real-time 

Figure 1. Surgery simulation on a congenitally 

malformed heart. The simulator runs entirely on 

the GPU. The surgical instruments provide 

haptic feedback.
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surgical simulation on very complex organs, such as the heart, for the first time. 

Calculating tissue deformations on the GPU does however expose some previously 

unaddressed problems on how to resolve haptic interaction. Since communication with 

the haptic devices must be handled on the CPU, synchronization and data transfer 

between the GPU and the CPU is necessary. Unfortunately this is a relatively slow 

operation. Hence, we must carefully design the communication scheme to avoid new 

performance bottlenecks.  

In this paper we describe and evaluate an efficient method of haptic interaction 

with the GPU based surgical simulator [4]. Haptic feedback is provided in response to 

collisions between instruments and tissue. The overall design criterion is to allow 

efficient, smooth, two-handed haptic interaction and easy balancing of the workload 

between simulation, visualisation, and delivery of force feedback.  

A driving force behind the described simulator and proposed tools is an effort to 

develop a surgical simulator dedicated to procedures in congenital heart disease, hence 

the illustration at the front page (Figure 1). 

1. Materials and Methods 

1.1. Hardware and Software Platforms 

The hardware platform used to evaluate the simulation was a personal computer 

running Windows XP on an AMD FX-55 CPU, and 2 GB of memory. The graphics bus 

was PCI Express x 16. The proposed algorithms were tested on three different graphics 

cards, a Geforce 6800 Ultra, a Quadro FX 4400, and a Geforce 7800 GTX, all from 

Nvidia. Two Phantom Omnis (Sensable Technologies) were used to achieve haptic 

interaction by low-level access through the accompanying OpenHaptics Toolkit. All 

programming was done in C++ using OpenGL and Cg with some manual modifications 

of the compiled vertex and fragment programs. The cardiac model used throughout this 

paper were obtained from three-dimensional MRI [5] using the segmentation algorithm 

described in [6]. The marching cubes algorithm was used for all surface reconstructions. 

Throughout this paper we will consider a spring mass simulation of 20.270 particles 

visualised by a surface of 137.490 faces.  

Figure 2. Particles in the spring mass 

system are connected in a regular, three-

dimensional grid (black). Each particle 

is allowed to move, but constrained by 

the springs to neighbouring particles.  

1.2. Spring Mass Simulation on the GPU 

This section provides a short description of our 

GPU based simulator, since some terminology 

from its implementation is necessary to explain 

the extension with haptic interaction. Further 

details of the GPU implementation can be found 

in [4]. First we discretise the volume of the 

concerned organ, e.g. the heart muscle mass, into 

a set of particles arranged in a regular three-

dimensional grid (Figure 2). Each particle is 

connected in a fixed pattern to its 18 nearest 

neighbours. The grid is mapped to a 2D-texture 

such that each particle is represented by a single 
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texel (Figure 3). We name this texture the 

position-texture. Conceptually, parallel 

computation of the spring mass system is 

invoked by rendering a single quad 

covering the entire position-texture. 

Processing of the white (void) particles is 

avoided by a depth test. A fragment 

program computes the forces that 

influence each particle due to its spring 

connections and the spring mass 

differential equation is solved by 

numerical integration to obtain updated 

particle positions. We refer to one pass of 

these calculations as a simulation-step in 

the remaining paper. A surface is 

constructed from the boundary nodes in the spring mass system and used for 

visualisation. During visualisation, a vertex program performs texture lookups in the 

position-texture to obtain the most recent particle positions. This allows us to use a 

static display list of the initial surface to also render it deformed. Rendering this surface 

is subsequently referred to as a visualisation-step. In [7] a mapping that decouples the 

visualised mesh from the physical simulation was presented. This allows for arbitrarily 

detailed surface meshes to be deformed by an underlying physical simulation (Figure 1 

and Figure 2).  

Figure 3. Excerpt of the position-texture. Each 

particle in the three-dimensional grid (Figure 2) 

is mapped to a unique texel (non-white). White 

texels correspond to void simulation particles 

outside the tissue. 

1.2.1. Probing and Grabbing 

The probing gesture (i.e. touching the tissue with an instrument) was realised entirely 

on the GPU by extending the fragment program responsible for the simulation-step. 

Prior to writing the final position to the position-texture, each fragment determines if 

the corresponding particle has moved inside the bounding ellipsoid of an instrument. In 

that case the particle is projected to the boundary of the ellipsoid before updating the 

position-texture.  

The grabbing gesture was designed to make use of both the CPU and the GPU. At 

the beginning of the gesture we read back the position-texture to the CPU once to 

identify particles inside the instrument’s bounding volume and store pointers to these. 

For the duration of the grabbing gesture a dedicated fragment program writes the 

absolute positions of the grabbed particles into the position-texture based on the current 

position of the instrument. 

1.2.2. Haptic Feedback 

Communication with the haptic device is handled by the haptic thread on the CPU. We 

are consequently required to continuously read back data from the GPU to the CPU in 

order to provide haptic feedback. We could transfer the entire position texture and let 

the CPU compute the relevant forces from the current simulation state. It is much 

cheaper however to compute these forces on the GPU and read back only the result. In 

the following we describe how to achieve this for the grabbing and probing gestures: 

During a grabbing gesture the CPU holds a list of the grabbed particles and 

corresponding coordinates in the position-texture as described in section 1.2.1. We 

create an off-screen force-buffer at the size of this list and for each particle a dedicated 

T.S. Sørensen and J. Mosegaard / Haptic Feedback for the GPU-Based Surgical Simulator 525



fragment program is run. This fragment program looks up the position of all neighbours 

to the current particle in the position-texture and calculates the force stored in each 

spring connection. The individual spring forces are summed to find the overall force 

vector affecting the particle. This vector is stored in the force-buffer at the position 

corresponding to the processed particle. Finally the force-buffer is read back to the CPU 

and passed to the haptic thread. If two hands are active both sets of corresponding 

forces are returned in a single readback. This is an optimisation as each readback 

implies a relatively costly synchronisation between the GPU and the CPU. 

During a probing gesture the situation is 

more difficult since the set of particles 

contributing to the force feedback is no longer 

constant during the gesture, but changes in 

each frame depending on the position of the 

instrument. We can re-use the force-buffer 

approach however, if we extend it with a fast 

method to pick the particles that collide with 

the instrument. Note that instruments can only 

collide with surface particles. As a fast picking 

algorithm, we propose to render a simulation-

surface into an offscreen picking-buffer. A 

simulation-surface is a mesh that connects the 

boundary particles in the spring mass 

simulation. It is not necessarily identical to the 

high-resolution mesh used in the visualisation-

step due to the mapping presented in [7]. The 

simulation-surface is rendered as seen from the base of the associated instrument. It will 

be “shaded” with colours that provide texture coordinates to the nearest simulation node 

in the position-texture. The result is a Voronoi-like diagram as illustrated in Figure 4. 

During force-buffer calculations we use this diagram to identify which particles in the 

spring mass system that are potentially touching the instrument. Consider a point on the 

boundary of the instrument. Transforming this point with the modelview and projection 

matrices that were used when rendering the picking-buffer results in a picking-
coordinate. Using this picking-coordinate for a texture lookup in the picking-buffer 

provides the texture coordinate to the corresponding particle in the position-texture due 

to the shading of the simulation-surface. To determine if the instrument is actually near 

the picked node, the third colour-component of the picking-buffer stores the distance 

from the picked point on the simulation-surface to the instrument. 

Figure 4. Contents of the picking-buffer. 

The simulation-surface is projected into 

the picking-buffer as represented by the 

black mesh. The surface is “shaded” with a 

colour representing the texture coordinate 

in the position-texture (Figure 3) of the 

corresponding particle in the spring-mass 

system (Figure 2).

The discussion above describes how to use the picking-buffer to find the position-

texture coordinates of the particles colliding with the probing instrument. It boils down 

to a single texture lookup for each sampling point on the boundary of the instrument. In 

the previously described case of grabbing, these position-texture coordinates were given 

directly as input to the fragment program which updated the force-buffer. When probing, 

we extend this fragment program to use instead a texture lookup in the picking-buffer to 

obtain the desired position-texture coordinate. The calculation of probing forces is 

initialised from the CPU, which keeps a list of sampling points on each instrument’s 

boundary. One by one, the sampling points are projected onto the picking buffer and the 

resulting picking-coordinates passed to the force computing fragment program. Each 

resulting force is stored in the corresponding entry in the force-buffer, which is finally 

read back to the haptic thread on the CPU. 
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Table 1. GPU rendering times on selected graphics cards. 
1 One simulation-step in a spring mass system of 20.270 nodes (18 neighbours each).  
2 One visualisation-step according to [7] (90.868 vertices / 137.490 faces). 
3 One rendering step of the off-screen picking-buffer (12.031 vertices / 46.928 faces). 
4 One calculation and subsequent readback of force feedback from 50 particles. 

Geforce 6800 Ultra Quadro FX 4400 Geforce 7800 GTX 

Simulation-step 1 2.5 ms 3.5 ms 0.9 ms 

Visualisation-step 2 19.9 ms 20.8 ms 11.1 ms 

Picking-buffer 3,4 6.3 ms 5.3 ms 2.6 ms 

Force-buffer 4 0.3 ms 0.7 ms 0.2 ms 

2. Results

Table 1 summarises the performance measurements obtained from the simulator for 

each of the tested graphics cards. As expected the newest GPU, the Geforce 7800 GTX, 

is the fastest for fragment and vertex processing (rows 1-3). It performs significantly 

better than the other two cards. To calculate and read back the accumulated spring 

forces the cards perform comparably due to the relatively high synchronisation cost of 

initiating a data transfer (row 4).  

A simulator was developed to support haptic interaction with cardiac models. One 

example from the running simulator is shown in Figure 1, where an incision was made 

to reveal the exact location of a ventricular septal defect in a congenitally malformed 

heart. A movie of the running simulator is available at 

http://www.daimi.au.dk/~sangild/MMVR06.wmv. 

3. Discussion

It is clear from Table 1 that surface visualisation is the single most expensive task in the 

simulator. In fact, several simulation-steps could be performed for each visualisation-

step while maintaining an overall frame rate of at least 30 Hz. Here the term overall

frame rate covers the accumulated cost of a number of simulation-steps, a visualisation-

step, rendering of the picking-buffers, and finally calculation and readback of the force 

buffers. Each simulation-step should be followed by rendering and readback of the 

force-buffer to ensure the highest update frequency of the haptic devices. When probing, 

the additional cost of updating the picking-buffers must also be considered. As seen 

from the 3rd row in Table 1, updating the picking buffer after each simulation-step 

significantly reduces the number of simulation-steps possible per overall frame. We 

briefly mention two strategies for high-frequency haptic rendering that do not 

necessitate picking-buffer updates after each simulation-step. The first strategy is to 

read back the force feedback from the GPU at e.g. 30 Hz and use the algorithms 

presented in [2,3] to extrapolate this data to the desired update frequency on the CPU. 

Another strategy is to allow the use a slightly outdated picking-buffer but proceed with 
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the update and readback of the force-buffer based on updated instrument positions. We 

have chosen the latter of these two strategies. 

Using the Geforce 7800 GTX as an example, we describe a combination of steps 

that will lead to an overall frame rate of 30 Hz running the simulator with haptic 

interaction. An overall frame rate requirement of 30 Hz corresponds to 33 ms available 

per frame. 11.1 ms are used for surface visualisation. Two picking-buffers (one for each 

hand) will be updated once in each overall frame, leaving 17 ms for simulation and 

force readback. During this period we can perform approximately 15 simulation-steps 

with subsequent rendering and readback of the force-buffers. This corresponds to a 

simulation-step frequency of 450 Hz.  

Comparing the overall system performance to a similar implementation on the CPU, 

the GPU implementation is much faster. With the work presented in this article we 

believe to be one step closer to a fully functional cardiac surgery simulator. As a next 

step we are planning to extend the simulator with support for suturing of patches to 

close e.g. septal defects. 
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