
Surgical Simulator

Thomas Sangild SØRENSEN a,1 and Jesper MOSEGAARD b

a Centre for Advanced Visualisation and Interaction, b Department of Computer Science,
University of Aarhus, Denmark

Abstract. The GPU has proven to be a powerful processor to compute spring-mass

based surgical simulations. It has not previously been shown however, how to

effectively implement haptic interaction with a simulation running entirely on the

GPU. This paper describes a method to calculate haptic feedback with limited

performance cost. It allows easy balancing of the GPU workload between

calculations of simulation, visualisation, and the haptic feedback.

Keywords. Haptic feedback, GPU, surgical simulation, congenital heart disease.

Introduction

Surgical simulators have traditionally

been implemented on the CPU and many

algorithms have been proposed in order to

calculate realistically looking soft-tissue

deformations in real-time. An overview of

the field is provided in [1]. Haptic

feedback is often used to increase the

realism of user interactions. This provides

an additional challenge as force feedback

must be provided at least at 500 Hz to feel

smooth. To achieve such an update rate

from a simulation running at a much

lower frequency, extrapolation schemes

have been developed, e.g. [2,3]. Overall,

speed has been a major concern as many time-consuming tasks all had to be handled on

the CPU. Motivated by this issue, it was shown in [4] that a twenty to thirty fold

acceleration of a spring-mass based surgical simulation could be achieved when moving

computations from the CPU to the GPU (i.e. the graphics card). This allowed real-time

Figure 1. Surgery simulation on a congenitally

malformed heart. The simulator runs entirely on

the GPU. The surgical instruments provide

haptic feedback.

1 Corresponding author: Thomas Sangild Sørensen, CAVI, University of Aarhus, Aabogade 34, 8200

Aarhus N, Denmark; E-mail: sangild@cavi.dk

Haptic Feedback for the GPU-Based

Medicine Meets Virtual Reality 14
J.D. Westwood et al. (Eds.)
IOS Press, 2006
© 2006 The authors. All rights reserved.

523

surgical simulation on very complex organs, such as the heart, for the first time.

Calculating tissue deformations on the GPU does however expose some previously

unaddressed problems on how to resolve haptic interaction. Since communication with

the haptic devices must be handled on the CPU, synchronization and data transfer

between the GPU and the CPU is necessary. Unfortunately this is a relatively slow

operation. Hence, we must carefully design the communication scheme to avoid new

performance bottlenecks.

In this paper we describe and evaluate an efficient method of haptic interaction

with the GPU based surgical simulator [4]. Haptic feedback is provided in response to

collisions between instruments and tissue. The overall design criterion is to allow

efficient, smooth, two-handed haptic interaction and easy balancing of the workload

between simulation, visualisation, and delivery of force feedback.

A driving force behind the described simulator and proposed tools is an effort to

develop a surgical simulator dedicated to procedures in congenital heart disease, hence

the illustration at the front page (Figure 1).

1. Materials and Methods

1.1. Hardware and Software Platforms

The hardware platform used to evaluate the simulation was a personal computer

running Windows XP on an AMD FX-55 CPU, and 2 GB of memory. The graphics bus

was PCI Express x 16. The proposed algorithms were tested on three different graphics

cards, a Geforce 6800 Ultra, a Quadro FX 4400, and a Geforce 7800 GTX, all from

Nvidia. Two Phantom Omnis (Sensable Technologies) were used to achieve haptic

interaction by low-level access through the accompanying OpenHaptics Toolkit. All

programming was done in C++ using OpenGL and Cg with some manual modifications

of the compiled vertex and fragment programs. The cardiac model used throughout this

paper were obtained from three-dimensional MRI [5] using the segmentation algorithm

described in [6]. The marching cubes algorithm was used for all surface reconstructions.

Throughout this paper we will consider a spring mass simulation of 20.270 particles

visualised by a surface of 137.490 faces.

Figure 2. Particles in the spring mass

system are connected in a regular, three-

dimensional grid (black). Each particle

is allowed to move, but constrained by

the springs to neighbouring particles.

1.2. Spring Mass Simulation on the GPU

This section provides a short description of our

GPU based simulator, since some terminology

from its implementation is necessary to explain

the extension with haptic interaction. Further

details of the GPU implementation can be found

in [4]. First we discretise the volume of the

concerned organ, e.g. the heart muscle mass, into

a set of particles arranged in a regular three-

dimensional grid (Figure 2). Each particle is

connected in a fixed pattern to its 18 nearest

neighbours. The grid is mapped to a 2D-texture

such that each particle is represented by a single

T.S. Sørensen and J. Mosegaard / Haptic Feedback for the GPU-Based Surgical Simulator524

texel (Figure 3). We name this texture the

position-texture. Conceptually, parallel

computation of the spring mass system is

invoked by rendering a single quad

covering the entire position-texture.

Processing of the white (void) particles is

avoided by a depth test. A fragment

program computes the forces that

influence each particle due to its spring

connections and the spring mass

differential equation is solved by

numerical integration to obtain updated

particle positions. We refer to one pass of

these calculations as a simulation-step in

the remaining paper. A surface is

constructed from the boundary nodes in the spring mass system and used for

visualisation. During visualisation, a vertex program performs texture lookups in the

position-texture to obtain the most recent particle positions. This allows us to use a

static display list of the initial surface to also render it deformed. Rendering this surface

is subsequently referred to as a visualisation-step. In [7] a mapping that decouples the

visualised mesh from the physical simulation was presented. This allows for arbitrarily

detailed surface meshes to be deformed by an underlying physical simulation (Figure 1

and Figure 2).

Figure 3. Excerpt of the position-texture. Each

particle in the three-dimensional grid (Figure 2)

is mapped to a unique texel (non-white). White

texels correspond to void simulation particles

outside the tissue.

1.2.1. Probing and Grabbing

The probing gesture (i.e. touching the tissue with an instrument) was realised entirely

on the GPU by extending the fragment program responsible for the simulation-step.

Prior to writing the final position to the position-texture, each fragment determines if

the corresponding particle has moved inside the bounding ellipsoid of an instrument. In

that case the particle is projected to the boundary of the ellipsoid before updating the

position-texture.

The grabbing gesture was designed to make use of both the CPU and the GPU. At

the beginning of the gesture we read back the position-texture to the CPU once to

identify particles inside the instrument’s bounding volume and store pointers to these.

For the duration of the grabbing gesture a dedicated fragment program writes the

absolute positions of the grabbed particles into the position-texture based on the current

position of the instrument.

1.2.2. Haptic Feedback

Communication with the haptic device is handled by the haptic thread on the CPU. We

are consequently required to continuously read back data from the GPU to the CPU in

order to provide haptic feedback. We could transfer the entire position texture and let

the CPU compute the relevant forces from the current simulation state. It is much

cheaper however to compute these forces on the GPU and read back only the result. In

the following we describe how to achieve this for the grabbing and probing gestures:

During a grabbing gesture the CPU holds a list of the grabbed particles and

corresponding coordinates in the position-texture as described in section 1.2.1. We

create an off-screen force-buffer at the size of this list and for each particle a dedicated

T.S. Sørensen and J. Mosegaard / Haptic Feedback for the GPU-Based Surgical Simulator 525

fragment program is run. This fragment program looks up the position of all neighbours

to the current particle in the position-texture and calculates the force stored in each

spring connection. The individual spring forces are summed to find the overall force

vector affecting the particle. This vector is stored in the force-buffer at the position

corresponding to the processed particle. Finally the force-buffer is read back to the CPU

and passed to the haptic thread. If two hands are active both sets of corresponding

forces are returned in a single readback. This is an optimisation as each readback

implies a relatively costly synchronisation between the GPU and the CPU.

During a probing gesture the situation is

more difficult since the set of particles

contributing to the force feedback is no longer

constant during the gesture, but changes in

each frame depending on the position of the

instrument. We can re-use the force-buffer

approach however, if we extend it with a fast

method to pick the particles that collide with

the instrument. Note that instruments can only

collide with surface particles. As a fast picking

algorithm, we propose to render a simulation-

surface into an offscreen picking-buffer. A

simulation-surface is a mesh that connects the

boundary particles in the spring mass

simulation. It is not necessarily identical to the

high-resolution mesh used in the visualisation-

step due to the mapping presented in [7]. The

simulation-surface is rendered as seen from the base of the associated instrument. It will

be “shaded” with colours that provide texture coordinates to the nearest simulation node

in the position-texture. The result is a Voronoi-like diagram as illustrated in Figure 4.

During force-buffer calculations we use this diagram to identify which particles in the

spring mass system that are potentially touching the instrument. Consider a point on the

boundary of the instrument. Transforming this point with the modelview and projection

matrices that were used when rendering the picking-buffer results in a picking-
coordinate. Using this picking-coordinate for a texture lookup in the picking-buffer

provides the texture coordinate to the corresponding particle in the position-texture due

to the shading of the simulation-surface. To determine if the instrument is actually near

the picked node, the third colour-component of the picking-buffer stores the distance

from the picked point on the simulation-surface to the instrument.

Figure 4. Contents of the picking-buffer.

The simulation-surface is projected into

the picking-buffer as represented by the

black mesh. The surface is “shaded” with a

colour representing the texture coordinate

in the position-texture (Figure 3) of the

corresponding particle in the spring-mass

system (Figure 2).

The discussion above describes how to use the picking-buffer to find the position-

texture coordinates of the particles colliding with the probing instrument. It boils down

to a single texture lookup for each sampling point on the boundary of the instrument. In

the previously described case of grabbing, these position-texture coordinates were given

directly as input to the fragment program which updated the force-buffer. When probing,

we extend this fragment program to use instead a texture lookup in the picking-buffer to

obtain the desired position-texture coordinate. The calculation of probing forces is

initialised from the CPU, which keeps a list of sampling points on each instrument’s

boundary. One by one, the sampling points are projected onto the picking buffer and the

resulting picking-coordinates passed to the force computing fragment program. Each

resulting force is stored in the corresponding entry in the force-buffer, which is finally

read back to the haptic thread on the CPU.

T.S. Sørensen and J. Mosegaard / Haptic Feedback for the GPU-Based Surgical Simulator526

Table 1. GPU rendering times on selected graphics cards.
1 One simulation-step in a spring mass system of 20.270 nodes (18 neighbours each).
2 One visualisation-step according to [7] (90.868 vertices / 137.490 faces).
3 One rendering step of the off-screen picking-buffer (12.031 vertices / 46.928 faces).
4 One calculation and subsequent readback of force feedback from 50 particles.

Geforce 6800 Ultra Quadro FX 4400 Geforce 7800 GTX

Simulation-step 1 2.5 ms 3.5 ms 0.9 ms

Visualisation-step 2 19.9 ms 20.8 ms 11.1 ms

Picking-buffer 3,4 6.3 ms 5.3 ms 2.6 ms

Force-buffer 4 0.3 ms 0.7 ms 0.2 ms

2. Results

Table 1 summarises the performance measurements obtained from the simulator for

each of the tested graphics cards. As expected the newest GPU, the Geforce 7800 GTX,

is the fastest for fragment and vertex processing (rows 1-3). It performs significantly

better than the other two cards. To calculate and read back the accumulated spring

forces the cards perform comparably due to the relatively high synchronisation cost of

initiating a data transfer (row 4).

A simulator was developed to support haptic interaction with cardiac models. One

example from the running simulator is shown in Figure 1, where an incision was made

to reveal the exact location of a ventricular septal defect in a congenitally malformed

heart. A movie of the running simulator is available at

http://www.daimi.au.dk/~sangild/MMVR06.wmv.

3. Discussion

It is clear from Table 1 that surface visualisation is the single most expensive task in the

simulator. In fact, several simulation-steps could be performed for each visualisation-

step while maintaining an overall frame rate of at least 30 Hz. Here the term overall

frame rate covers the accumulated cost of a number of simulation-steps, a visualisation-

step, rendering of the picking-buffers, and finally calculation and readback of the force

buffers. Each simulation-step should be followed by rendering and readback of the

force-buffer to ensure the highest update frequency of the haptic devices. When probing,

the additional cost of updating the picking-buffers must also be considered. As seen

from the 3rd row in Table 1, updating the picking buffer after each simulation-step

significantly reduces the number of simulation-steps possible per overall frame. We

briefly mention two strategies for high-frequency haptic rendering that do not

necessitate picking-buffer updates after each simulation-step. The first strategy is to

read back the force feedback from the GPU at e.g. 30 Hz and use the algorithms

presented in [2,3] to extrapolate this data to the desired update frequency on the CPU.

Another strategy is to allow the use a slightly outdated picking-buffer but proceed with

T.S. Sørensen and J. Mosegaard / Haptic Feedback for the GPU-Based Surgical Simulator 527

the update and readback of the force-buffer based on updated instrument positions. We

have chosen the latter of these two strategies.

Using the Geforce 7800 GTX as an example, we describe a combination of steps

that will lead to an overall frame rate of 30 Hz running the simulator with haptic

interaction. An overall frame rate requirement of 30 Hz corresponds to 33 ms available

per frame. 11.1 ms are used for surface visualisation. Two picking-buffers (one for each

hand) will be updated once in each overall frame, leaving 17 ms for simulation and

force readback. During this period we can perform approximately 15 simulation-steps

with subsequent rendering and readback of the force-buffers. This corresponds to a

simulation-step frequency of 450 Hz.

Comparing the overall system performance to a similar implementation on the CPU,

the GPU implementation is much faster. With the work presented in this article we

believe to be one step closer to a fully functional cardiac surgery simulator. As a next

step we are planning to extend the simulator with support for suturing of patches to

close e.g. septal defects.

Acknowledgments

We kindly acknowledge the funding we obtained from the Danish Research Agency

(grant #2059-03-0004). Likewise we deeply appreciate the clinical feedback provided

by pediatric heart surgeons Ole Kromann Hansen and Vibeke Hjortdal from the

Department of Cardiothoracic Surgery at Aarhus University Hospital.

References

[1] A. Liu, F. Tendick, K. Cleary and C. R. Kaufmann. A survey of surgical

simulation: applications, technology, and education. Presence: Teleoperators and

Virtual Environments. 2003;12(6):599–614.

[2] F. Mazzella, K. Montgomery, J. C. Latombe. The Forcegrid: A Buffer Structure for

Haptic Interaction with Virtual Elastic Objects. ICRA 2002:939-46.

[3] G. Picinbono, J-C. Lombardo, H. Delingette, N. Ayache. Improving realism of a

surgery simulator: linear anisotropic elasticity, complex interactions and force

extrapolation. Journal of Visualisation and Computer Animation, 13(3):147-67.

[4] J. Mosegaard, P. Herborg, T.S. Sørensen. A GPU accelerated spring-mass system

for surgical simulation. Medicine Meets Virtual Reality 13, 2005:342-8.

[5] T.S. Sørensen, H. Körperich , G.F. Greil, J. Eichhorn, P. Barth, H. Meyer, E.M.

Pedersen, P. Beerbaum. Operator-independent isotropic three-dimensional

magnetic resonance imaging for morphology in congenital heart disease: a

validation study. Circulation. 2004;110(2):163-9.

[6] T.S. Sørensen, E.M. Pedersen, O.K. Hansen, K. Sørensen. Visualization of

morphological details in congenitally malformed hearts: Virtual, three-dimensional

reconstruction from magnetic resonance imaging. Cardiology in the Young.

2003;13(5):451-60.

[7] J. Mosegaard, T.S. Sørensen. Real-time Deformation of Detailed Geometry Based

on Mappings to a Less Detailed Physical Simulation on the GPU. IPT & EGVE

Workshop 2005:105-10.

T.S. Sørensen and J. Mosegaard / Haptic Feedback for the GPU-Based Surgical Simulator528

http://mitpress.mit.edu/catalog/author/default.asp?aid=20501
http://mitpress.mit.edu/catalog/author/default.asp?aid=6283
http://mitpress.mit.edu/catalog/author/default.asp?aid=6112
http://mitpress.mit.edu/catalog/author/default.asp?aid=6589
http://www-sop.inria.fr/epidaure/BIBLIO/Author/PICINBONO-G.html
http://www-sop.inria.fr/epidaure/BIBLIO/Author/LOMBARDO-JC.html
http://www-sop.inria.fr/epidaure/BIBLIO/Author/DELINGETTE-H.html
http://www-sop.inria.fr/epidaure/BIBLIO/Author/AYACHE-N.html

	1. Materials and Methods
	1.1. Hardware and Software Platforms
	Spring Mass Simulation on the GPU
	1.2.1. Probing and Grabbing
	1.2.2. Haptic Feedback

	Results
	3. Discussion

