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Abstract. Modern graphics processing units (GPUs) have recently become 
fully programmable. Thus a powerful and cost-efficient new computational 
platform for surgical simulations has emerged. A broad selection of 
publications has shown that scientific computations obtain a significant speedup 
if ported from the CPU to the GPU. To take advantage of the GPU however, 
one must understand the limitations inherent in its design and devise algorithms 
accordingly. We have observed that many researchers with experience in 
surgical simulation find this a significant hurdle to overcome. To facilitate the 
transition from CPU- to GPU-based simulations, we review the most important 
concepts and data structures required to realise two popular deformable models 
on the GPU: the finite element model and the spring-mass model. 

1   Introduction 

General-purpose computation using graphics hardware (or GPGPU) is a research area 
that has grown rapidly in recent years. By using the modern graphics card (i.e. the 
GPU) for computations, many computationally heavy algorithms have been 
accelerated significantly compared to conventional CPU-based algorithms. This 
includes most of the techniques currently being applied in surgical simulators. 
Unfortunately, the GPU is difficult to utilise efficiently. A substantial knowledge of 
its design, programming model, and limitations is necessary for optimal results. This 
paper is intended as an introductory article to GPGPU aimed specifically for 
researchers with experience in surgical simulation, who wish to attempt a GPU 
implementation of their algorithms. We review the literature introducing the most 
important concepts, and discuss the hardware limitations we must adhere for optimal 
results. 

An overview of the many applications of GPGPU is best obtained by exploring the 
online resource [1] and the books in the GPU Gems series [2,3]. Moreover these 
surveys [4,5] and course material [6,7] highlight some commonly used algorithms. 
The survey by Strzodka et al [5] has a well-written introduction to scientific 
computation on the GPU. Several programming languages are available, ranging from 
a low level machine language [8] to high level C-like languages such as Cg [9] and 
GLSL [10]. Based on a general data abstraction model for parallel programming, 
streams, a compiler and run-time system is available [11]. A few getting started 
tutorials are available here [12]. This paper extends these references with a survey and 
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discussion of GPU accelerated techniques aimed specifically towards surgical 
simulation. 

2   GPGPU Concepts and Performance 

The standard graphics pipeline in OpenGL and DirectX contains fixed functionality 
vertex and pixel shaders. A basic knowledge of this pipeline is assumed in the 
remaining paper, and only a brief review is provided below. More information can be 
found in e.g. [13]. The vertex shader transforms the geometry (triangles) received 
from the application from local object space coordinates to window coordinates 
through a series of transformations. The colour and texture coordinates are also 
computed for each vertex. The geometric primitive is subsequently rasterized, a term 
that describes the process in which the colour of each pixel in the primitive is 
computed. The pixel shader is responsible for computing these colours. Based on each 
pixel’s spatial position in the geometric primitive, the pixel shader receives the per-
pixel interpolated colour and texture coordinates as input. The fixed function pixel 
shader then computes the output colour as a function of the input colour and the 
texture colours. The texture colours are found from texture lookups using the per-
pixel input texture coordinates.  

In the past generations of GPUs the vertex and pixel shaders have gradually 
become fully programmable. In GPGPU we utilise this to write pixel shaders that no 
longer compute colours, but instead the scalars and/or vectors involved in a general 
computation. Each pixel can store a 4-tuple of floating point values in up to 32 bit 
precision per entry. We store the computed pixels directly in a non-visible GPU 
memory buffer as it is no longer meaningful to visualise these pixels directly. This 
buffer is actually a texture that can be used as input for subsequent iterations of our 
computations. Hence we have established a computational model in which we can 
both read from and write to GPU memory. A custom vertex- and a custom pixel 
shader program are uploaded to the GPU and applied in the subsequent processing of 
primitives in parallel. Due to this parallel nature of the GPU (the Radeon X1900XT 
has 48 pixel pipes, a Geforce 7900GTX has 24 pixel pipes), a high throughput can be 
obtained. A CPU-based physical simulation typically stores data in one-, two-, and 
three-dimensional arrays. On the GPU, data is stored instead in one-, two-, or three-
dimensional textures. As the GPU works most efficiently on two-dimensional data 
structures, we transform both 1D and 3D textures to 2D textures in practise [14]. 
Naturally, some bookkeeping is necessary to handle this transformation. When a 
computation is invoked, the pixel shader receives an input texture coordinate that 
identifies the spatial position of the corresponding pixel in the input textures. If the 
algorithm requires access to neighbouring pixels, this is achieved by offsetting the 
input texture coordinate before looking up in the respective textures. These offsets can 
be either “global constants” or obtained through an additional texture lookup at the 
current pixel. As will be explained in section 3, the type of offset depends on the 
underlying spatial discretization of the computational domain; whether it is structured 
or unstructured.  
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Using the benchmark test suite GPUBench [15] an overview of the performance of 
a system’s GPU can be obtained. Fig. 1 shows the graphs for the most recent GPUs 
from Nvidia and ATI. Looking at the number of floating point operations available 
per second (Flops) it can be observed that the current performance leaders provide 
roughly 250 GFlops. This number was obtained from the GPUBench test 
instrissue. This test measures the number of MAD instructions that can be 
executed per second on the present GPU. Since each shader operates on 4-tuples of 
floating point values and each MAD operation constitutes two floating point 
operations (a multiplication and an addition), the values reported by instrissue 
are multiplied by 8 for conversion to GFlops. Compared to the theoretical peak 
performance from a state-of-the art CPU (7.4 GFlops / 3.8 GHz Intel Xeon [16]) it 
should be clear why a GPU implementation of a surgical simulation can potentially 
boost performance. Discussing potential performance gains merely based on the 
shader speed reported in Fig. 1 does not provide a fulfilling picture however, as a 
typical GPU implementation of a surgical simulation would not be compute bound. 
More likely it would be memory bound - meaning that access to GPU memory would 
be the limiting factor. Consequently, Fig. 1 contains three graphs showing the 
observed memory bandwidth on the most recent GPUs. They are based on data 
obtained running GPUBench’s floatbandwidth test on the respective GPUs [15]. 
It can be seen that cache memory access is significantly faster than sequential and 

 

Fig. 1. Observed performance from the most recent generations of Nvidia and ATI GPUs. Data 
was obtained using GPUBench [15]. Blue diamonds represent the shader performance 
measured in GFlops. Cache, sequential, and random memory access measured in GB/s are 
depicted in the remaining graphs. 

 

Fig. 2. Cache hit memory access costs as a function of the number of shader instructions. Data 
was obtained from the most recent generations of Nvidia (left) and ATI (right) GPUs using 
GPUBench [15]. The number of texture fetches in each test was varied from 1 to 6.  
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random memory access. The cache memory bandwidth constitutes an upper limit in 
memory bandwidth, hardly attainable in real-world applications. Depending on the 
memory coherence of a given application, the growth in memory bandwidth could 
instead follow the lines depicting the sequential or random memory access bandwidth. 
Thus, designing memory coherent algorithms is of outmost importance. 

To discuss whether a given application is compute or memory bound, the literature 
(e.g. [3]) defines the arithmetic intensity of an application as the “amount of work” 
that is performed per memory access. Applications with high arithmetic intensity are 
most likely compute bound while low arithmetic intensity is an indication of a 
memory bound algorithm. To discuss this issue in more detail, we once again resort to 
GPUBench: The test fetchcosts shows the execution time of a GPU program as a 
function of the number of instructions. Fig. 2 shows the results from this test on two 
GPUs. Note that each test is comprised of six sub-tests that perform one to six 
memory cache accesses each. We will discuss below the results obtained on an ATI 
Radeon GPU. A similar (but not entirely identical) discussion can be made for the 
Nvidia based GPU, but we leave this discussion for the reader to complete. First 
notice the horizontal line segments in the rightmost half of Fig. 2. They show that for 
each memory access, a number of “free” computations can be made without 
influencing the overall execution time. Only as the non-horizontal (diagonal) part of 
the graph is reached, there is a cost associated to issuing additional instructions. From 
the figure we can predict the execution time of an application consisting entirely of 
memory reads (solid black line). Notice that the slope of this line is much steeper than 
the slope of the diagonal. The diagonal constitutes the border between a memory 
bound and a truly compute bound application: An application with an arithmetic 
intensity that places it between the leftmost solid line and the diagonal is memory 
bound, while an application with an arithmetic intensity that places it on (or close to) 
the diagonal would be compute bound. As we shall see in the subsequent sections, 
surgical simulation algorithms implemented on the GPU are most likely memory 
bound, as the complexity in algebraic operations per memory access is limited. 
Experiments show however, that these GPU-based algorithms still significantly 
outperform their CPU-based counterparts. 

3   Surgical Simulation on the GPU 

Many computational models for deformable surfaces have been proposed in the 
existing literature. We refer to the surveys [17,18] for a detailed overview. We limit 
our description of GPU-based techniques to mesh-based deformable models (most 
often a mesh of triangles, tetrahedrons, or cubes) as this is the preferred approach in 
real-time surgical simulators that must handle arbitrary incisions and general changes 
in topology. For the remaining paper we refer to nodes as the discretized points 
defining a mesh. We present an overview of the required GPU-based techniques to 
implement the most common deformable models: finite element models and spring-
mass models. The reader should subsequently be able to define custom modifications 
to these general models in GPU terms. The implicit linear elastic finite element  
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models presented by Bro-Nielsen et al in [19] are discussed in section 3.1. The 
explicit finite element model (tensor-mass model) presented by Cotin et al in [20] and 
the explicit spring-mass model (e.g. [20,21]) are discussed in section 3.2. Szekely et 
al used a cluster of processors in [22] to realise a laparoscopic surgery simulator. 
Many of the general considerations on the design of parallel algorithms for numerical 
computations on multiple CPUs transfer directly to the parallel processor we 
introduce in this paper, namely the GPU. 

3.1   Implicit Finite Element Models  

Using the notation from [19], finding the deformations in the implicit linear elastic 
finite element model reduces to solving either a static system on the form fKu = or a 
dynamic system on the form fKu  uC  uM =++  &&& , where M and C are diagonal mass 
and damping matrices, K is a symmetric positive definite matrix representing the 
topology and stiffness of the discretized 
mass points, and u and f are the 
deformation and external force vectors 
respectively. No matter the choice of 
system, it can be rewritten on the form 

fuK
~

 ~~ =  following a finite difference 
time discretization for the dynamic 
system [19]. If we let n denote the total 
number of mass point in the finite 
element discretization,Κ~ has dimensions 
3n x 3n and entry kij encodes the 
connectivity and stiffness between  
nodes i and j. In its most elementary 
formΚ~ is sparse having non-zero entries 
only between connected mass points. 
Depending on the choice of spatial discretization, it can either be structured (banded) 
or unstructured. Fig. 3 (left) illustrates a spatial discretization that leads to a banded 
matrix. Boxes (possibly consisting of six tetrahedra of fixed topology) are used as the 
basic spatial building blocks in a regular three-dimensional grid. The rightmost 
tetrahedralisation in Fig. 3 on the other hand, leads to an unstructured sparse matrix. 
Finally, using the condensation technique described in [19], Κ~ can be transformed to a 
smaller dense matrix of boundary nodes. We have distinguished between the different 
layouts of Κ~ since they each call for their own distinct representation on the GPU. The 
three matrix layouts are 1) sparse (banded), 2) sparse (unstructured), and 3) dense. 
Solving the linear system of equations involves matrix and vector algebra. We discuss 
common linear algebra operations below for the different representation of Κ~ . This is 
followed by a discussion on GPU-based solutions to the linear system. 

The first formulation of a general framework for numerical algebra on the GPU 
was published by Thompson et al in [23] in a very “machine-near” language. Inspired 
by the BLAS and LAPACK libraries [24,25], Krueger et al subsequently published 
their initial work on a GPU-based counterpart [3,26].  

 

Fig. 3. Structured (left) and unstructured 
(right) tetrahedral meshes. The choice of 
tetrahedralisation influences the layout of the 
resulting stiffness matrix in a linear elastic 
finite element model. 
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Fig. 4 (top) shows their representation 
of sparse banded matrices. Each band in 
an n x n–dimensional matrix A can be 
seen as a one-dimensional vector of 
length n. As explained in section 2, we 
convert this vector to a two-dimensional 
texture on the GPU. Similarly, vectors b 
and x of dimension n are stored in 
textures of identical dimensions to the 
bands of A. In many computations it is 
necessary to find the matrix-vector 
multiplication x=Ab. To achieve this we 
render a quad covering output texture x 
in multiple passes – one rendering pass 
for each band in A. Fig. 4 (bottom) 
illustrates the three passes required for a 
tri-banded matrix-vector multiplication 
with this representation. In each pass the 
values in corresponding pixels in 
textures A and b are multiplied and 

added to x. In each pass (except the pass 
using the matrix diagonal) the texture 
coordinates used to look up pixels in b 
are shifted to account for the 
corresponding band position. Several 
optimisations to this basic scheme is 
possible and discussed in [3,26]. Since it 
is not possible to read from and write to 
the same texture during a pass, the 
accumulative writes to texture x must be 
implemented through two textures, one 
of which is bound as input and the other 
for writing in an alternating fashion. It is 
important to realise the parallel nature of 
the algorithm: For each of the three 
passes in the example in Fig. 4, the n 
entries in the result vector x are 
computed simultaneously, providing a 
significant speedup to CPU-based 
matrix-vector multiplications given a 
sufficient number of pixel pipes and 
texture memory bandwidth. 

Sparse unstructured matrices are 
handled differently from the banded 
matrices above. Krueger et al [3,26] 
renders point based primitives to 

 

Fig. 4. GPU representation of a sparse banded 
matrix A, a vector b, and the corresponding 
matrix-vector multiplication (adapted from 
[26]). Top: Each band represents a one-
dimensional array which is stored in a 2D 
texture on the GPU (A1-A3). Zeroes are 
prepended or appended depending on the 
position of the band in the matrix. Bottom: A 
vector b is defined and multiplied to A. Each 
band in A is multiplied with b pixelwise. The 
products are added to form Ab. Notice that the 
texture coordinates used to access b are offset 
corresponding to each band. 

 
Fig. 5. Unstructured sparse matrix 
representation specialized from [27]. We 
assume exactly three non-zero entries per row 
in this example (grey). These values are stored 
in a “dense texture”. For each pixel in this 
texture a pointer (i.e. texture coordinate) to the 
corresponding entry in vector b is stored 
(arrows).   
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implement such matrix-vector multiplications. We will instead describe a different 
approach using texture pointers however, as this relates nicely to this section’s 
subsequent discussion of algorithm design that minimises memory bandwidth. We 
illustrate a specialisation of the general sparse unstructured matrix-vector 
multiplication by Bolz et al [27] to find the product x=Ab. We assume that a constant 
number of non-zero entries exist in each row of the sparse n x n dimensional matrix A 
of. In Fig. 5 we use only three entries per row to reduce the size of the figure. We 
create a one-dimensional array of length 2·3·n to represent A. 3n entries are necessary 
to store the non-zeroes values in A. Furthermore, for each value we additionally store 
a pointer to the corresponding entry in textures b. As always, we represent this one-
dimensional array as a two-dimensional texture on the GPU. We render a quad 
covering our output texture x to initiate the parallel computation of Ab. For each pixel 
we look up the three non-zero values in the corresponding row in the texture 
representation of A from the input texture coordinate. The texture representation of A 
furthermore provides us with three pointers (texture coordinates) that are used to look 
up the values in b corresponding to the non-zero entries in A. The results from the 
three multiplications are added and stored in x. Again, it is important that the reader 
recognizes the parallel nature of the algorithm, in which each entry in x is computedin 
parallel. 

With the understanding of sparse matrix representations on the GPU, the reader 
should have the prerequisites to derive representations of dense matrices as these are 
more straightforward than those of sparse matrices. We refer to [3,28,29] for 
completeness. 

We now return to solving the linear system fuK
~

 ~~ = that was defined initially in this 
section. As K

~ is symmetric and positive definite, one approach to finding u~ is through 
the conjugate gradient algorithm. Using their respective frameworks for linear 
algebra, both Krueger et al and Bolz et al showed how to implement the conjugate 
gradient algorithm on the GPU in [26,27]. An alternative approach guaranteed to 
converge to the right solution for arbitrary starting configurations is the Gauss-Seidel 
iterative process (again since Κ~ is symmetric and positive definite). Contained in [26] 
is a short section discussing the implementation of this algorithm on the GPU. Closely 
related to Gauss-Seidel’s method is the Jacobi method. In contrast to Gauss-Seidel’s 
methods, Jacobi’s method is ideally suited for a parallel implementation. For this 
reason it has been used intensely in previous GPGPU publications, e.g. in several 
chapters in [2,3], and in [30,31].  

The representation of banded matrices as shown in Fig. 4 results in a minimum 
number of texture fetches: only the actual values needed for a matrix-vector 
multiplication are read from texture memory. The unstructured sparse matrix 
representation on the other hand requires further texture lookups to perform a matrix-
vector multiplication, as pointers are stored in textures and the corresponding values 
only obtained through an additional texture lookup. Looking back at the discussion 
related to Fig. 2 it should be clear why the banded representation performs better than 
the unstructured alternative. It is simply due to the lower number of texture fetches 
involved. Consider also the limited number of algebraic operations performed per 
memory access in both approaches (that is the arithmetic intensity is low). Given the 
memory bandwidth on current GPUs both matrix representations are memory bound, 
although positioned differently in the graphs in Fig. 2. It was Fatahalian et al who 



100 T.S. Sørensen and J. Mosegaard 

initially reported that memory access is indeed the limiting factor for dense matrix-
matrix multiplications on the GPU [28]. 

The reader is encouraged to examine the GPU-based surgical simulator by Wu et al 
[32]. They used an implicit finite element solver through the conjugate gradient 
algorithm and obtained a two-fold acceleration. This work was done on an Nvidia 
Geforce 5950 Ultra however. As is clear from Fig. 1, both the GPU speed and 
memory bandwidth have increased five- to ten-fold since on the most recent GPUs. 

3.2   Explicit Models: Spring-Mass and Tensor-Mass Models  

We return to the general equation of Newtonian 
motion: fKu  uC  uM =++  &&&  [19,20]. We now 
seek to solve the system of differential 
equations through an explicit time integration 
scheme rather than by the implicit method 
discussed in section 3.1. A particularly well 
suited explicit integration scheme is Verlet 
integration [33], a scheme in which the position 
of each mesh node for the subsequent time step 
is calculated from its positions in the two 
previous iterations and from an elastic force 
vector (acceleration vector). No additional 
information, e.g. velocities, needs to be stored 
and calculated. The force vector is calculated 
locally from each node’s connectivity in the 
mesh. We denote the force vector corresponding to a spring-mass system as iF̂  and the 
force vector relating to the tensor-mass system as iF

~ . Using the notation from [20] these 
forces are then defined as 

∑
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where Pi denotes the position of node i, Pi
0 is the initial (undeformed) position of node 

i, Pi Pj
 is the vector between nodes i and j, lij

 and kij is the spring rest length and 
stiffness respectively between nodes i and j, and K is the rigidity (or stiffness) matrix 
of the linear elastic finite element model.  

A two-dimensional GPU- and spring-mass based cloth simulation using Verlet 
integration was presented in [34]. It is sufficiently simple to be recommended for 
inexperienced GPU programmers. Mosegaard et al presented a three-dimensional, 
volumetric spring-mass based surgical simulator implemented on the GPU in [35]. 
Their paper compares two spring-mass implementations, one in which nodes were 
confined to a regular three-dimensional grid, and one in which node positions were 
unrestricted and springs explicitly represented in a connectivity texture. Overall, a 
twenty-fold acceleration over a similar CPU-based system was achieved for the first 
method, while the latter achieved a ten-fold acceleration. Their results were obtained 
on a Geforce 6800 Ultra. It is clear from Fig. 1 that both the shader speed and 
memory bandwidth have increased significantly since and even better results could be 

 

Fig. 6. Position texture, inspired from 
[35]. A regular 3D grid of nodes is 
mapped to a 2D texture. The colors of 
the individual pixels denote the 
corresponding particle’s position. 
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obtained on the most recent generations of GPUs. In the faster of the two methods 
they use a position texture to store the positions of the nodes in the spring-mass 
system. An example one such texture is depicted in Fig. 6. To initialise parallel 
computation of each time-step, a quad at the size of this texture is rendered in the 
output buffer. A depth test is used to prevent that calculations are wasted on the white 
(void) particles. The forces iF̂ are computed for each pixel (node): The two most recent 
position textures are provided as input textures to the pixel shader. By adding to the 
input texture coordinate the fixed offset to each neighbour, each neighbouring node’s 
position can be looked up. As the nodes are restricted to a regular grid, the individual 
spring rest lengths are known and need not be looked up. Furthermore, the spring 
stiffness is also kept constant. Thus, the only texture fetches involved are those used 
to obtain the connected nodes’ positions. I.e. they use only the minimal number of 
texture fetches. This is important in the light of the discussion concerning the cost  
of texture fetches (Fig. 2). Their alternative approach uses texture lookups to fetch the 
texture coordinate of each neighbour. This doubles the overall number of texture 
fetches, consequently reducing the simulation rate by a factor of two. Replacing the 
spring induced forces iF̂  with the tensor-mass forces iF

~
 would instead solve an 

explicitly formulated finite element model. For each connected node we need then an 
additional texture lookup in the stiffness matrix to obtain Kij. Consequently we can 
expect the tensor-mass model to run at half the speed of the spring-mass model. 
Compared to a CPU-based implementation however, it is still significantly faster. The 
most recent performance measurements are found in Sørensen et al [36], who report 
simulation rates exceeding 1 kHz using a Geforce 7800 GTX on a spring-mass system 
consisting of 20.000 nodes connected with 18 neighbours each in a regular volumetric 
mesh (grid). 

The methods by Mosegaard et al are simple to implement and run fast but use a 
significant amount of texture memory: The position texture approach wastes memory 
representing void particles, while the connectivity texture approach allocates memory 
for a constant number of neighbours per node wasting texture memory if the number 
of neighbours varies significantly throughout the mesh. To conserve memory, Georgii 
et al used a stack of valence textures to encode different levels of connectivity in [37]. 
Unfortunately the algorithm reduces performance as well due to a much more 
complicated rendering scheme. This led Georgii et al to develop an edge-centric data 
structure instead that “iterates” over springs rather than nodes [38]. This reduces the 
arithmetic intensity of their algorithm since each spring force is now computed only 
once whereas they are computed twice in the previous methods [35,37]. As all the 
presented algorithms are most likely memory bound (Fig. 2) this is not a major 
advantage however. We are more interested in examining the number of texture 
fetches used in the edge-centric approach. On the regular mesh shown in Fig. 6 we 
experienced that the number of texture fetches involved in the edge-centric approach 
versus the position texture approach are almost identical. The edge-centric approach 
currently runs only in 8 bit or 16 bit precision as a necessary blending operation is not 
supported in 32 bit precision on any GPUs yet. Also, the vertex processor is used 
intensely, a potential bottleneck. It will be up to the individual application to weigh 
the advantage of reduced memory consumption versus these precision and vertex 
processing issues. 
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3.3   Visualisation and Interaction 

Depending on the chosen simulation model, the result of each time step is either a 
texture of node deformations (implicit model) or a texture of node positions (explicit 
model). In either case a deformed surface triangle-mesh of the modelled organ can be 
visualised from a static display list of the initial mesh configuration through a 
dedicated vertex shader [35]. For each vertex in the visualised surface mesh, the 
application provides the required texture coordinate to look up the corresponding 
deformation vector or particle position. The vertex shader can thus compute the 
deformed vertex position for the current time step. 

From both section 3.1 and 3.2 it is clear that a 
structured spatial discretization of the simulated 
volume results in the fastest algorithms due to a 
minimum number of texture lookups required in 
each time step. This can however result in a jagged 
(stair-like) look of the modelled morphology as 
illustrated in Fig. 7. To overcome this problem 
Mosegaard et al proposed in [39] to fully decouple 
surface visualisation from the underlying volumetric 
simulation. They represent each vertex on the 
surface model by an offset from the nearest node in 
the simulation mesh. Fig. 7 shows a smooth surface 
drawn through this method. The offset vectors are 
expressed in the tangent-space of the surface, and 
the surface thus correctly deforms based on the 
deformation of the associated nodes in the 
simulation mesh. 

Interaction with a GPU-based surgical simulator 
is the final issue to be discussed in this paper. The 
overall question is whether to resolve user 
interaction on the CPU or on the GPU. If the CPU is 
chosen one must be careful not to transfer large 
amounts of data from the GPU to the CPU in each 
frame, as this would introduce a performance bottleneck. Consequently, interaction 
that involves computations on the current state of the simulation is probably best 
implemented on the GPU. Peripheral devices can only be communicated with through 
the CPU however, so a minimum amount of per-frame data transfer cannot always be 
avoided. Sørensen et al showed in [36] how to implement force feedback from a 
GPU-based simulator with limited performance penalty. Several groups have recently 
published algorithms for GPU accelerated collision detection [40-42]. 
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Fig. 7. Surface visualisation 
(circle) de-coupled from a volu-
metric simulation of a sphere 
discretized to a regular grid (grey). 
The green circles represent ver-
tices on the surface mesh that can 
be sampled at any resolution. Each 
vertex is represented by an offset 
vector (arrow) from the nearest 
simulation node.  
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