
M. Harders and G. Székely (Eds.): ISBMS 2006, LNCS 4072, pp. 93 – 104, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Introduction to GPU Accelerated Surgical Simulation

Thomas Sangild Sørensen1 and Jesper Mosegaard2

1 Centre for Advanced Visualisation and Interaction, 2 Department of Computer Science
University of Aarhus, Denmark

sangild@cavi.dk, mosegard@daimi.au.dk

Abstract. Modern graphics processing units (GPUs) have recently become
fully programmable. Thus a powerful and cost-efficient new computational
platform for surgical simulations has emerged. A broad selection of
publications has shown that scientific computations obtain a significant speedup
if ported from the CPU to the GPU. To take advantage of the GPU however,
one must understand the limitations inherent in its design and devise algorithms
accordingly. We have observed that many researchers with experience in
surgical simulation find this a significant hurdle to overcome. To facilitate the
transition from CPU- to GPU-based simulations, we review the most important
concepts and data structures required to realise two popular deformable models
on the GPU: the finite element model and the spring-mass model.

1 Introduction

General-purpose computation using graphics hardware (or GPGPU) is a research area
that has grown rapidly in recent years. By using the modern graphics card (i.e. the
GPU) for computations, many computationally heavy algorithms have been
accelerated significantly compared to conventional CPU-based algorithms. This
includes most of the techniques currently being applied in surgical simulators.
Unfortunately, the GPU is difficult to utilise efficiently. A substantial knowledge of
its design, programming model, and limitations is necessary for optimal results. This
paper is intended as an introductory article to GPGPU aimed specifically for
researchers with experience in surgical simulation, who wish to attempt a GPU
implementation of their algorithms. We review the literature introducing the most
important concepts, and discuss the hardware limitations we must adhere for optimal
results.

An overview of the many applications of GPGPU is best obtained by exploring the
online resource [1] and the books in the GPU Gems series [2,3]. Moreover these
surveys [4,5] and course material [6,7] highlight some commonly used algorithms.
The survey by Strzodka et al [5] has a well-written introduction to scientific
computation on the GPU. Several programming languages are available, ranging from
a low level machine language [8] to high level C-like languages such as Cg [9] and
GLSL [10]. Based on a general data abstraction model for parallel programming,
streams, a compiler and run-time system is available [11]. A few getting started
tutorials are available here [12]. This paper extends these references with a survey and

94 T.S. Sørensen and J. Mosegaard

discussion of GPU accelerated techniques aimed specifically towards surgical
simulation.

2 GPGPU Concepts and Performance

The standard graphics pipeline in OpenGL and DirectX contains fixed functionality
vertex and pixel shaders. A basic knowledge of this pipeline is assumed in the
remaining paper, and only a brief review is provided below. More information can be
found in e.g. [13]. The vertex shader transforms the geometry (triangles) received
from the application from local object space coordinates to window coordinates
through a series of transformations. The colour and texture coordinates are also
computed for each vertex. The geometric primitive is subsequently rasterized, a term
that describes the process in which the colour of each pixel in the primitive is
computed. The pixel shader is responsible for computing these colours. Based on each
pixel’s spatial position in the geometric primitive, the pixel shader receives the per-
pixel interpolated colour and texture coordinates as input. The fixed function pixel
shader then computes the output colour as a function of the input colour and the
texture colours. The texture colours are found from texture lookups using the per-
pixel input texture coordinates.

In the past generations of GPUs the vertex and pixel shaders have gradually
become fully programmable. In GPGPU we utilise this to write pixel shaders that no
longer compute colours, but instead the scalars and/or vectors involved in a general
computation. Each pixel can store a 4-tuple of floating point values in up to 32 bit
precision per entry. We store the computed pixels directly in a non-visible GPU
memory buffer as it is no longer meaningful to visualise these pixels directly. This
buffer is actually a texture that can be used as input for subsequent iterations of our
computations. Hence we have established a computational model in which we can
both read from and write to GPU memory. A custom vertex- and a custom pixel
shader program are uploaded to the GPU and applied in the subsequent processing of
primitives in parallel. Due to this parallel nature of the GPU (the Radeon X1900XT
has 48 pixel pipes, a Geforce 7900GTX has 24 pixel pipes), a high throughput can be
obtained. A CPU-based physical simulation typically stores data in one-, two-, and
three-dimensional arrays. On the GPU, data is stored instead in one-, two-, or three-
dimensional textures. As the GPU works most efficiently on two-dimensional data
structures, we transform both 1D and 3D textures to 2D textures in practise [14].
Naturally, some bookkeeping is necessary to handle this transformation. When a
computation is invoked, the pixel shader receives an input texture coordinate that
identifies the spatial position of the corresponding pixel in the input textures. If the
algorithm requires access to neighbouring pixels, this is achieved by offsetting the
input texture coordinate before looking up in the respective textures. These offsets can
be either “global constants” or obtained through an additional texture lookup at the
current pixel. As will be explained in section 3, the type of offset depends on the
underlying spatial discretization of the computational domain; whether it is structured
or unstructured.

 An Introduction to GPU Accelerated Surgical Simulation 95

Using the benchmark test suite GPUBench [15] an overview of the performance of
a system’s GPU can be obtained. Fig. 1 shows the graphs for the most recent GPUs
from Nvidia and ATI. Looking at the number of floating point operations available
per second (Flops) it can be observed that the current performance leaders provide
roughly 250 GFlops. This number was obtained from the GPUBench test
instrissue. This test measures the number of MAD instructions that can be
executed per second on the present GPU. Since each shader operates on 4-tuples of
floating point values and each MAD operation constitutes two floating point
operations (a multiplication and an addition), the values reported by instrissue
are multiplied by 8 for conversion to GFlops. Compared to the theoretical peak
performance from a state-of-the art CPU (7.4 GFlops / 3.8 GHz Intel Xeon [16]) it
should be clear why a GPU implementation of a surgical simulation can potentially
boost performance. Discussing potential performance gains merely based on the
shader speed reported in Fig. 1 does not provide a fulfilling picture however, as a
typical GPU implementation of a surgical simulation would not be compute bound.
More likely it would be memory bound - meaning that access to GPU memory would
be the limiting factor. Consequently, Fig. 1 contains three graphs showing the
observed memory bandwidth on the most recent GPUs. They are based on data
obtained running GPUBench’s floatbandwidth test on the respective GPUs [15].
It can be seen that cache memory access is significantly faster than sequential and

Fig. 1. Observed performance from the most recent generations of Nvidia and ATI GPUs. Data
was obtained using GPUBench [15]. Blue diamonds represent the shader performance
measured in GFlops. Cache, sequential, and random memory access measured in GB/s are
depicted in the remaining graphs.

Fig. 2. Cache hit memory access costs as a function of the number of shader instructions. Data
was obtained from the most recent generations of Nvidia (left) and ATI (right) GPUs using
GPUBench [15]. The number of texture fetches in each test was varied from 1 to 6.

96 T.S. Sørensen and J. Mosegaard

random memory access. The cache memory bandwidth constitutes an upper limit in
memory bandwidth, hardly attainable in real-world applications. Depending on the
memory coherence of a given application, the growth in memory bandwidth could
instead follow the lines depicting the sequential or random memory access bandwidth.
Thus, designing memory coherent algorithms is of outmost importance.

To discuss whether a given application is compute or memory bound, the literature
(e.g. [3]) defines the arithmetic intensity of an application as the “amount of work”
that is performed per memory access. Applications with high arithmetic intensity are
most likely compute bound while low arithmetic intensity is an indication of a
memory bound algorithm. To discuss this issue in more detail, we once again resort to
GPUBench: The test fetchcosts shows the execution time of a GPU program as a
function of the number of instructions. Fig. 2 shows the results from this test on two
GPUs. Note that each test is comprised of six sub-tests that perform one to six
memory cache accesses each. We will discuss below the results obtained on an ATI
Radeon GPU. A similar (but not entirely identical) discussion can be made for the
Nvidia based GPU, but we leave this discussion for the reader to complete. First
notice the horizontal line segments in the rightmost half of Fig. 2. They show that for
each memory access, a number of “free” computations can be made without
influencing the overall execution time. Only as the non-horizontal (diagonal) part of
the graph is reached, there is a cost associated to issuing additional instructions. From
the figure we can predict the execution time of an application consisting entirely of
memory reads (solid black line). Notice that the slope of this line is much steeper than
the slope of the diagonal. The diagonal constitutes the border between a memory
bound and a truly compute bound application: An application with an arithmetic
intensity that places it between the leftmost solid line and the diagonal is memory
bound, while an application with an arithmetic intensity that places it on (or close to)
the diagonal would be compute bound. As we shall see in the subsequent sections,
surgical simulation algorithms implemented on the GPU are most likely memory
bound, as the complexity in algebraic operations per memory access is limited.
Experiments show however, that these GPU-based algorithms still significantly
outperform their CPU-based counterparts.

3 Surgical Simulation on the GPU

Many computational models for deformable surfaces have been proposed in the
existing literature. We refer to the surveys [17,18] for a detailed overview. We limit
our description of GPU-based techniques to mesh-based deformable models (most
often a mesh of triangles, tetrahedrons, or cubes) as this is the preferred approach in
real-time surgical simulators that must handle arbitrary incisions and general changes
in topology. For the remaining paper we refer to nodes as the discretized points
defining a mesh. We present an overview of the required GPU-based techniques to
implement the most common deformable models: finite element models and spring-
mass models. The reader should subsequently be able to define custom modifications
to these general models in GPU terms. The implicit linear elastic finite element

 An Introduction to GPU Accelerated Surgical Simulation 97

models presented by Bro-Nielsen et al in [19] are discussed in section 3.1. The
explicit finite element model (tensor-mass model) presented by Cotin et al in [20] and
the explicit spring-mass model (e.g. [20,21]) are discussed in section 3.2. Szekely et
al used a cluster of processors in [22] to realise a laparoscopic surgery simulator.
Many of the general considerations on the design of parallel algorithms for numerical
computations on multiple CPUs transfer directly to the parallel processor we
introduce in this paper, namely the GPU.

3.1 Implicit Finite Element Models

Using the notation from [19], finding the deformations in the implicit linear elastic
finite element model reduces to solving either a static system on the form fKu = or a
dynamic system on the form fKu uC uM =++ &&& , where M and C are diagonal mass
and damping matrices, K is a symmetric positive definite matrix representing the
topology and stiffness of the discretized
mass points, and u and f are the
deformation and external force vectors
respectively. No matter the choice of
system, it can be rewritten on the form

fuK
~

 ~~ = following a finite difference
time discretization for the dynamic
system [19]. If we let n denote the total
number of mass point in the finite
element discretization,Κ~ has dimensions
3n x 3n and entry kij encodes the
connectivity and stiffness between
nodes i and j. In its most elementary
formΚ~ is sparse having non-zero entries
only between connected mass points.
Depending on the choice of spatial discretization, it can either be structured (banded)
or unstructured. Fig. 3 (left) illustrates a spatial discretization that leads to a banded
matrix. Boxes (possibly consisting of six tetrahedra of fixed topology) are used as the
basic spatial building blocks in a regular three-dimensional grid. The rightmost
tetrahedralisation in Fig. 3 on the other hand, leads to an unstructured sparse matrix.
Finally, using the condensation technique described in [19], Κ~ can be transformed to a
smaller dense matrix of boundary nodes. We have distinguished between the different
layouts of Κ~ since they each call for their own distinct representation on the GPU. The
three matrix layouts are 1) sparse (banded), 2) sparse (unstructured), and 3) dense.
Solving the linear system of equations involves matrix and vector algebra. We discuss
common linear algebra operations below for the different representation of Κ~ . This is
followed by a discussion on GPU-based solutions to the linear system.

The first formulation of a general framework for numerical algebra on the GPU
was published by Thompson et al in [23] in a very “machine-near” language. Inspired
by the BLAS and LAPACK libraries [24,25], Krueger et al subsequently published
their initial work on a GPU-based counterpart [3,26].

Fig. 3. Structured (left) and unstructured
(right) tetrahedral meshes. The choice of
tetrahedralisation influences the layout of the
resulting stiffness matrix in a linear elastic
finite element model.

98 T.S. Sørensen and J. Mosegaard

Fig. 4 (top) shows their representation
of sparse banded matrices. Each band in
an n x n–dimensional matrix A can be
seen as a one-dimensional vector of
length n. As explained in section 2, we
convert this vector to a two-dimensional
texture on the GPU. Similarly, vectors b
and x of dimension n are stored in
textures of identical dimensions to the
bands of A. In many computations it is
necessary to find the matrix-vector
multiplication x=Ab. To achieve this we
render a quad covering output texture x
in multiple passes – one rendering pass
for each band in A. Fig. 4 (bottom)
illustrates the three passes required for a
tri-banded matrix-vector multiplication
with this representation. In each pass the
values in corresponding pixels in
textures A and b are multiplied and

added to x. In each pass (except the pass
using the matrix diagonal) the texture
coordinates used to look up pixels in b
are shifted to account for the
corresponding band position. Several
optimisations to this basic scheme is
possible and discussed in [3,26]. Since it
is not possible to read from and write to
the same texture during a pass, the
accumulative writes to texture x must be
implemented through two textures, one
of which is bound as input and the other
for writing in an alternating fashion. It is
important to realise the parallel nature of
the algorithm: For each of the three
passes in the example in Fig. 4, the n
entries in the result vector x are
computed simultaneously, providing a
significant speedup to CPU-based
matrix-vector multiplications given a
sufficient number of pixel pipes and
texture memory bandwidth.

Sparse unstructured matrices are
handled differently from the banded
matrices above. Krueger et al [3,26]
renders point based primitives to

Fig. 4. GPU representation of a sparse banded
matrix A, a vector b, and the corresponding
matrix-vector multiplication (adapted from
[26]). Top: Each band represents a one-
dimensional array which is stored in a 2D
texture on the GPU (A1-A3). Zeroes are
prepended or appended depending on the
position of the band in the matrix. Bottom: A
vector b is defined and multiplied to A. Each
band in A is multiplied with b pixelwise. The
products are added to form Ab. Notice that the
texture coordinates used to access b are offset
corresponding to each band.

Fig. 5. Unstructured sparse matrix
representation specialized from [27]. We
assume exactly three non-zero entries per row
in this example (grey). These values are stored
in a “dense texture”. For each pixel in this
texture a pointer (i.e. texture coordinate) to the
corresponding entry in vector b is stored
(arrows).

 An Introduction to GPU Accelerated Surgical Simulation 99

implement such matrix-vector multiplications. We will instead describe a different
approach using texture pointers however, as this relates nicely to this section’s
subsequent discussion of algorithm design that minimises memory bandwidth. We
illustrate a specialisation of the general sparse unstructured matrix-vector
multiplication by Bolz et al [27] to find the product x=Ab. We assume that a constant
number of non-zero entries exist in each row of the sparse n x n dimensional matrix A
of. In Fig. 5 we use only three entries per row to reduce the size of the figure. We
create a one-dimensional array of length 2·3·n to represent A. 3n entries are necessary
to store the non-zeroes values in A. Furthermore, for each value we additionally store
a pointer to the corresponding entry in textures b. As always, we represent this one-
dimensional array as a two-dimensional texture on the GPU. We render a quad
covering our output texture x to initiate the parallel computation of Ab. For each pixel
we look up the three non-zero values in the corresponding row in the texture
representation of A from the input texture coordinate. The texture representation of A
furthermore provides us with three pointers (texture coordinates) that are used to look
up the values in b corresponding to the non-zero entries in A. The results from the
three multiplications are added and stored in x. Again, it is important that the reader
recognizes the parallel nature of the algorithm, in which each entry in x is computedin
parallel.

With the understanding of sparse matrix representations on the GPU, the reader
should have the prerequisites to derive representations of dense matrices as these are
more straightforward than those of sparse matrices. We refer to [3,28,29] for
completeness.

We now return to solving the linear system fuK
~

 ~~ = that was defined initially in this
section. As K

~ is symmetric and positive definite, one approach to finding u~ is through
the conjugate gradient algorithm. Using their respective frameworks for linear
algebra, both Krueger et al and Bolz et al showed how to implement the conjugate
gradient algorithm on the GPU in [26,27]. An alternative approach guaranteed to
converge to the right solution for arbitrary starting configurations is the Gauss-Seidel
iterative process (again since Κ~ is symmetric and positive definite). Contained in [26]
is a short section discussing the implementation of this algorithm on the GPU. Closely
related to Gauss-Seidel’s method is the Jacobi method. In contrast to Gauss-Seidel’s
methods, Jacobi’s method is ideally suited for a parallel implementation. For this
reason it has been used intensely in previous GPGPU publications, e.g. in several
chapters in [2,3], and in [30,31].

The representation of banded matrices as shown in Fig. 4 results in a minimum
number of texture fetches: only the actual values needed for a matrix-vector
multiplication are read from texture memory. The unstructured sparse matrix
representation on the other hand requires further texture lookups to perform a matrix-
vector multiplication, as pointers are stored in textures and the corresponding values
only obtained through an additional texture lookup. Looking back at the discussion
related to Fig. 2 it should be clear why the banded representation performs better than
the unstructured alternative. It is simply due to the lower number of texture fetches
involved. Consider also the limited number of algebraic operations performed per
memory access in both approaches (that is the arithmetic intensity is low). Given the
memory bandwidth on current GPUs both matrix representations are memory bound,
although positioned differently in the graphs in Fig. 2. It was Fatahalian et al who

100 T.S. Sørensen and J. Mosegaard

initially reported that memory access is indeed the limiting factor for dense matrix-
matrix multiplications on the GPU [28].

The reader is encouraged to examine the GPU-based surgical simulator by Wu et al
[32]. They used an implicit finite element solver through the conjugate gradient
algorithm and obtained a two-fold acceleration. This work was done on an Nvidia
Geforce 5950 Ultra however. As is clear from Fig. 1, both the GPU speed and
memory bandwidth have increased five- to ten-fold since on the most recent GPUs.

3.2 Explicit Models: Spring-Mass and Tensor-Mass Models

We return to the general equation of Newtonian
motion: fKu uC uM =++ &&& [19,20]. We now
seek to solve the system of differential
equations through an explicit time integration
scheme rather than by the implicit method
discussed in section 3.1. A particularly well
suited explicit integration scheme is Verlet
integration [33], a scheme in which the position
of each mesh node for the subsequent time step
is calculated from its positions in the two
previous iterations and from an elastic force
vector (acceleration vector). No additional
information, e.g. velocities, needs to be stored
and calculated. The force vector is calculated
locally from each node’s connectivity in the
mesh. We denote the force vector corresponding to a spring-mass system as iF̂ and the
force vector relating to the tensor-mass system as iF

~ . Using the notation from [20] these
forces are then defined as

∑
∈

−=
)(

0)(ˆ
iNj ji

ji
ijjiiji lk

P PP

PP
PPF and ∑

∈
+=

)(

00~

iNj

j
jij

i
iiii

P

PPKPPKF

where Pi denotes the position of node i, Pi
0 is the initial (undeformed) position of node

i, Pi Pj
 is the vector between nodes i and j, lij

 and kij is the spring rest length and
stiffness respectively between nodes i and j, and K is the rigidity (or stiffness) matrix
of the linear elastic finite element model.

A two-dimensional GPU- and spring-mass based cloth simulation using Verlet
integration was presented in [34]. It is sufficiently simple to be recommended for
inexperienced GPU programmers. Mosegaard et al presented a three-dimensional,
volumetric spring-mass based surgical simulator implemented on the GPU in [35].
Their paper compares two spring-mass implementations, one in which nodes were
confined to a regular three-dimensional grid, and one in which node positions were
unrestricted and springs explicitly represented in a connectivity texture. Overall, a
twenty-fold acceleration over a similar CPU-based system was achieved for the first
method, while the latter achieved a ten-fold acceleration. Their results were obtained
on a Geforce 6800 Ultra. It is clear from Fig. 1 that both the shader speed and
memory bandwidth have increased significantly since and even better results could be

Fig. 6. Position texture, inspired from
[35]. A regular 3D grid of nodes is
mapped to a 2D texture. The colors of
the individual pixels denote the
corresponding particle’s position.

 An Introduction to GPU Accelerated Surgical Simulation 101

obtained on the most recent generations of GPUs. In the faster of the two methods
they use a position texture to store the positions of the nodes in the spring-mass
system. An example one such texture is depicted in Fig. 6. To initialise parallel
computation of each time-step, a quad at the size of this texture is rendered in the
output buffer. A depth test is used to prevent that calculations are wasted on the white
(void) particles. The forces iF̂ are computed for each pixel (node): The two most recent
position textures are provided as input textures to the pixel shader. By adding to the
input texture coordinate the fixed offset to each neighbour, each neighbouring node’s
position can be looked up. As the nodes are restricted to a regular grid, the individual
spring rest lengths are known and need not be looked up. Furthermore, the spring
stiffness is also kept constant. Thus, the only texture fetches involved are those used
to obtain the connected nodes’ positions. I.e. they use only the minimal number of
texture fetches. This is important in the light of the discussion concerning the cost
of texture fetches (Fig. 2). Their alternative approach uses texture lookups to fetch the
texture coordinate of each neighbour. This doubles the overall number of texture
fetches, consequently reducing the simulation rate by a factor of two. Replacing the
spring induced forces iF̂ with the tensor-mass forces iF

~
 would instead solve an

explicitly formulated finite element model. For each connected node we need then an
additional texture lookup in the stiffness matrix to obtain Kij. Consequently we can
expect the tensor-mass model to run at half the speed of the spring-mass model.
Compared to a CPU-based implementation however, it is still significantly faster. The
most recent performance measurements are found in Sørensen et al [36], who report
simulation rates exceeding 1 kHz using a Geforce 7800 GTX on a spring-mass system
consisting of 20.000 nodes connected with 18 neighbours each in a regular volumetric
mesh (grid).

The methods by Mosegaard et al are simple to implement and run fast but use a
significant amount of texture memory: The position texture approach wastes memory
representing void particles, while the connectivity texture approach allocates memory
for a constant number of neighbours per node wasting texture memory if the number
of neighbours varies significantly throughout the mesh. To conserve memory, Georgii
et al used a stack of valence textures to encode different levels of connectivity in [37].
Unfortunately the algorithm reduces performance as well due to a much more
complicated rendering scheme. This led Georgii et al to develop an edge-centric data
structure instead that “iterates” over springs rather than nodes [38]. This reduces the
arithmetic intensity of their algorithm since each spring force is now computed only
once whereas they are computed twice in the previous methods [35,37]. As all the
presented algorithms are most likely memory bound (Fig. 2) this is not a major
advantage however. We are more interested in examining the number of texture
fetches used in the edge-centric approach. On the regular mesh shown in Fig. 6 we
experienced that the number of texture fetches involved in the edge-centric approach
versus the position texture approach are almost identical. The edge-centric approach
currently runs only in 8 bit or 16 bit precision as a necessary blending operation is not
supported in 32 bit precision on any GPUs yet. Also, the vertex processor is used
intensely, a potential bottleneck. It will be up to the individual application to weigh
the advantage of reduced memory consumption versus these precision and vertex
processing issues.

102 T.S. Sørensen and J. Mosegaard

3.3 Visualisation and Interaction

Depending on the chosen simulation model, the result of each time step is either a
texture of node deformations (implicit model) or a texture of node positions (explicit
model). In either case a deformed surface triangle-mesh of the modelled organ can be
visualised from a static display list of the initial mesh configuration through a
dedicated vertex shader [35]. For each vertex in the visualised surface mesh, the
application provides the required texture coordinate to look up the corresponding
deformation vector or particle position. The vertex shader can thus compute the
deformed vertex position for the current time step.

From both section 3.1 and 3.2 it is clear that a
structured spatial discretization of the simulated
volume results in the fastest algorithms due to a
minimum number of texture lookups required in
each time step. This can however result in a jagged
(stair-like) look of the modelled morphology as
illustrated in Fig. 7. To overcome this problem
Mosegaard et al proposed in [39] to fully decouple
surface visualisation from the underlying volumetric
simulation. They represent each vertex on the
surface model by an offset from the nearest node in
the simulation mesh. Fig. 7 shows a smooth surface
drawn through this method. The offset vectors are
expressed in the tangent-space of the surface, and
the surface thus correctly deforms based on the
deformation of the associated nodes in the
simulation mesh.

Interaction with a GPU-based surgical simulator
is the final issue to be discussed in this paper. The
overall question is whether to resolve user
interaction on the CPU or on the GPU. If the CPU is
chosen one must be careful not to transfer large
amounts of data from the GPU to the CPU in each
frame, as this would introduce a performance bottleneck. Consequently, interaction
that involves computations on the current state of the simulation is probably best
implemented on the GPU. Peripheral devices can only be communicated with through
the CPU however, so a minimum amount of per-frame data transfer cannot always be
avoided. Sørensen et al showed in [36] how to implement force feedback from a
GPU-based simulator with limited performance penalty. Several groups have recently
published algorithms for GPU accelerated collision detection [40-42].

Acknowledgements

We kindly acknowledge the funding we received from the Danish Research Council’s
Program Committee on IT-Research (grant #2059-03-0004).

Fig. 7. Surface visualisation
(circle) de-coupled from a volu-
metric simulation of a sphere
discretized to a regular grid (grey).
The green circles represent ver-
tices on the surface mesh that can
be sampled at any resolution. Each
vertex is represented by an offset
vector (arrow) from the nearest
simulation node.

 An Introduction to GPU Accelerated Surgical Simulation 103

References

1. General-Purpose Computation Using Graphics Hardware. http://www.gpgpu.org/.
2. Fernando, R. GPU Gems, Part VI. Addison-Wesley 2004.
3. Pharr, M. GPU Gems 2, Part IV-VI. Addison-Wesley 2005.
4. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., and

Purcell, T.J. A Survey of General-Purpose Computation on Graphics Hardware. State of
the Art Reports, Eurographics 2005:21-51.

5. Strzodka, R., Doggett, M., and Kolb, A. Scientific Computation for Simulations on
Programmable Graphics Hardware. Simulation Modelling Practice and Theory
2005;13(8):667-681.

6. GPGPU course, Siggraph 05. http://www.gpgpu.org/s2005/.
7. IEEE Visualization 2005 tutorial. http://www.gpgpu.org/vis2005/.
8. OpenGL extensions specifications. ARB_vertex_program and ARB_fragment_program.

http://oss.sgi.com/projects/ogl-sample/registry/index.html.
9. Fernando, R. and Kilgard, M.J. The Cg Tutorial. Addison-Wesley 2003.

10. Rost, R.J. OpenGL Shading Language. Addison-Wesley 2004.
11. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., and Hanrahan, P. Brook for

GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics,
Siggraph 2003;23(3):777-786.

12. Göddeke, D. GPGPU::Tutorial. http://www.mathematik.uni-dortmund.de/~goeddeke/
gpgpu/index.html.

13. Möller, T.A. and Haines, E. Real-Time Rendering. A K Peters 2002.
14. Harris, M.J., Baxter III, V., Scheuermann, T., and Lastra, E. Simulation of Cloud

Dynamics on Graphics Hardware. Siggraph/Eurographics Workshop On Graphics
Hardware 2003:92-101.

15. Buck, I., Fatahalian, K., and Hanrahan, P. GPUBench: Evaluating GPU performance for
Numerical and Scientific Application. General Purpose Computing on Graphics
Processors, ACM Workshop 2004:C-20.

16. Dongarra, J. The Linpack Benchmark Report. http://www.netlib.org/benchmark/
performance.ps.

17. Montagnat, J., Delingette, H., and Ayache, N. A review of deformable surfaces: topology,
geometry and deformation. Image and Vision Computing 2001;19(14):1023-1040.

18. Gibson, S.F.F. and Mirtich, B. A Survey of Derformable Modeling in Computer Graphics.
Technical Report, Mitsubishi Electric Research Lab.

19. Bro-Nielsen, M. and Cotin, S. Real-time Volumetric Deformable Models for Surgeyr
Simulation using Finite Elements and Condensation. Computer Grahics Forum,
Eurographics 1996;15:57-66.

20. Cotin, S., Delingette, H., and Ayache, N. A Hybrid Elastic Model Allowing Real-Time
Cutting, Deformations and Force-Feedback for surgery Training and Simulation. The
Visual Computer 2000;16(8):437-452.

21. Liu, A., Tendick, F., Cleary, K., and Kaufmann, C. A Survey of Surgical Simulation:
Applications, Technology, and Education. Presence 2003;12(6):599-614.

22. Szekely, G., Brechbuhler, C., Hutter, R., Rhomberg, A., and Schmid, P. Modelling of Soft
Tissue Deformation for Laparoscopic Surgery Simulation. Medical Image Analysis
2000;4:57-66.

23. Thompson, C., Hahn, C., and Oskin, M. Using Modern Graphics Architectures for
General-Purpose Computing: A Framework and Analysis, 35th IEEE/ACM International
Symposium on Micro Architecture 2002:306-3.

104 T.S. Sørensen and J. Mosegaard

24. Dongarra, J., Du Croz, J., Hammarling, S., and Hanson, R. An extended set of FORTRAN
basic linear algebra subprograms. ACM Transactions on Mathematical Software
1988;14:1-17.

25. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. LAPACK Users'
Guide. Society for Industrial and Applied Mathematics 1999.

26. Krueger, J. and Westermann, R. Linear algebra operators for GPU implementation of
numerical algorithms. ACM Transactions on Graphics, Siggraph 2003;22(3):908-916.

27. Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. ACM Transactions on Graphics, Siggraph
2003;22(3):917-924.

28. Fatahalian, K., Sugerman, J., and Hanrahan, P. Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication. ACM Siggraph/Eurographics Conference on
Graphics Hardware 2004:133-137.

29. Galoppo, N., Govindaraju, N.K., Henson, M., and Manocha, D. LU-GPU: Efficient
Algorithms for Solving Dense Linear Systems on Graphics Hardware. ACM/IEEE
conference on Supercomputing 2005:3.

30. Goodnight, N., Woolley, C., Lewin, G., Luebke, D., and Humphreys, G. A Multigrid
Solver for Boundary Value Problems Using Programmable Graphics Hardware. ACM
Siggraph/Eurographics Conference on Graphics Hardware 2003:102-111.

31. Rumpf, M. and Strzodka, R. Using Graphics Cards for Quantized FEM Computations.
IASTED Visualization, Imaging and Image Processing 2001:193-202.

32. Wu, W. and Heng, P.A. A hybrid condensed finite element model with GPU acceleration
for interactive 3D soft tissue cutting. Computer Animation and Virtual Worlds
2004;15:219-227.

33. Dummer, J. A Simple Time-Corrected Verlet Integration Method. http://www.gamedev.
net/reference/programming/features/verlet/.

34. Green, S. Cloth Simulation on the GPU. http://developer.nvidia.com/object/
demo_cloth_simulation.html.

35. Mosegaard, J. and Sørensen, T.S. GPU accelerated surgical simulators for Complex
Morphology. IEEE Virtual Reality 2005:147-153.

36. Sørensen, T.S. and Mosegaard, J. Haptic Feedback for the GPU-based Surgical Simulator.
Studies in Health Technology and Informatics, 14th Medicine Meets Virtual Reality
2006;119:523-528.

37. Georgii, J., Echtler, F., and Westermann, R. Interactive Simulation of Deformable Bodies
on GPUs. Simulation and Visualisation 2005:247-258.

38. Georgii, J. and Westermann, R. Mass-Spring Systems on the GPU. Simulation Modelling
Practice and Theory 2005;13(8):693-702.

39. Mosegaard, J. and Sørensen, T.S. Real-time Deformation of Detailed Geometry Based on
Mappings to a Less Detailed Physical Simulation on the GPU. Immersive Projection
Technology & Eurographics Virtual Environments Workshop 2005:105-110.

40. Govindaraju, N.K., Lin, M., and Manocha, D. Quick-CULLIDE: Fast Inter- and Intra-
Object Collision Culling using Graphics Hardware. IEEE Virtual Reality 2005:59-66.

41. Wong, W.S.-K. and Baciu, G. GPU-based intrinsic collision detection for deformable
surfaces. Computer Animation and Virtual Worlds 2005;16:153-161.

42. Choi, Y.-J., Kim, Y.J., and Kim, M.-H. Rapid pairwise intersection tests using
programmable GPUs. The Visual Computer 2006;22:80-89

	Introduction
	GPGPU Concepts and Performance
	Surgical Simulation on the GPU
	Implicit Finite Element Models
	Explicit Models: Spring-Mass and Tensor-Mass Models
	Visualisation and Interaction

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

