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Abstract. Since theadvent ofprogrammable graphicsprocessors (GPUs)
their computational powers have been utilized for general purpose compu-
tation. Initially by “exploiting” graphics APIs and recently through dedi-
cated parallel computation frameworks such as the Compute Unified
Device Architecture (CUDA) from Nvidia. This paper investigates multi-
ple implementationsofvolumetricMass-Spring-Damper systems inCUDA.
The obtained performance is compared to previous implementations uti-
lizing the GPU through the OpenGL graphics API. We find that both per-
formance and optimization strategies differ widely between the OpenGL
and CUDA implementations. Specifically, the previous recommendation of
using implicitly connected particles is replaced by a recommendation that
supports unstructured meshes and run-time topological changes with an
insignificant performance reduction.

Keywords: Mass-Spring-Damper Models, GPGPU and Deformable
Models.

1 Introduction

In the past many biomechanical models have been suggested to simulate soft
tissue deformations [1]. Most popular are the finite element models (FEMs) and
mass-spring-damper models (MSDMs). Of these models the non-linear FEMs
provide the most accurate description of the tissue behavior [2][3]. They require
however a significant amount of computation which can be prohibitive in many
real-time applications. At the expense of precision, particularly for large defor-
mations, linearized FEMs have been suggested to alleviate this problem [4][5].
MSDMs combine non-linear tissue characteristics and fast computation. Due to
these properties the MSDMs have been widely used to simulate tissue deforma-
tion in existing surgical simulators.

Commodity graphics hardware (GPUs) is an emerging platform for general
purpose computation (GPGPU). It is increasingly utilized to accelerate the
computation of biomechanical models [6][7][8]. The results obtained in these
references were accomplished by exploiting well-known graphics APIs such as

F. Bello, E. Edwards (Eds.): ISBMS 2008, LNCS 5104, pp. 49–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



50 A. Rasmusson, J. Mosegaard, and T.S. Sørensen

OpenGL or DirectX. This is, unfortunately, a cumbersome process with a steep
learning curve. In order to make GPGPU more accessible, one of the major
hardware vendors, NVIDIA, recently released a new framework named CUDA -
Compute Unified Device Architecture [9].

The purpose of this paper is to investigate which benefits the CUDA framework
offers over OpenGL (or equivalently DirectX) in the computation of MSDMs, par-
ticularly with respect to speed and functionality. We evaluate multiple parallel
implementation strategies for the MSDMs in CUDA and compare their perfor-
mance to highly optimized OpenGL code [7]. Specifically, we evaluate whether
the conclusions derived in [7] can be transferred from OpenGL to CUDA.

2 Theory

2.1 CUDA Overview

The CUDA framework exposes the multiprocessors on the GPU for general pur-
pose computation through a small number of simple extensions of the C program-
ming language. Compute intensive components of a program can be offloaded
to the GPU in so-called kernels, each of which can be executed in parallel on
different input data. This is known as SIMD, Single Instruction Multiple Data.
A configuration of threads that will execute the kernel in parallel is specified
as blocks of threads with constant width, height and depth. As the maximum
number of threads in a block is limited (currently to 512), multiple blocks are dis-
tributed in a rectangular grid in order to obtain the desired number of threads.
CUDA maps this grid to the GPU such that each multiprocessor executes one
or more blocks of threads.

To achieve optimal performance it is important to minimize the cost of mem-
ory accesses in a kernel. This is achieved through careful utilization of the differ-
ent memory pools, which are depicted in Fig. 1. The figure illustrates the small
amount of on-chip shared memory which can be used within a block for inter-
thread communication. Utilizing this shared memory efficiently yields memory
accesses as fast as register accesses (2 clock cycles). In contrast, the main device
memory accessible by all threads, has a worst-case access time of 400-600 clock
cycles. Finally, Fig.1 shows the texture memory which can be utilized for very
fast cached access to any give subset of the device memory.

As any CUDA-device is able to read 32-bit, 64-bit or 128-bit in a single in-
struction it is furthermore important to organize data in device memory to
utilize this. In particular data should be aligned to the appropriate 4, 8 or 16
byte boundaries, even for data of sizes not matching 32-bit, 64-bit or 128-bit.
If three floats are needed, performance is optimized by storing four properly
aligned floats which can be read in a single 128-bit memory, contrary to storing
only three float which are accessed using a 64-bit and a 32-bit memory access.
The cost is the extra memory needed for padding.

The real benefit is, however, when threads executed in parallel access a con-
tiguous part of the device memory. If consecutive threads access consecutive
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Fig. 1. CUDA Memory Model, adapted from [9]. The arrows indicate read or write
access for a thread, ie. textures are non-writable. In this example the configuration of
threads is a 2 × 1 grid of 2 × 1 blocks resulting in 4 threads in total.

memory address, say 32-bit floats, the individual memory instructions are re-
placed by a single memory access. This is known as memory coalescence and is
at present possible for groups of 32 consecutive threads.

2.2 Mass-Spring-Damper Model (MSDM)

In a mass-spring system particles pi, i = 1 . . .N with masses mi are inter-
connected by springs. Every particle is displaced by the forces induced by its
interconnecting springs. The relation is described by a second order differential
equation according to Newton’s second law of motion:

miai =
∑

j

fij , (1)

where ai is an acceleration vector for particle i and the force fij along a spring
between particle i and particle j is expressed using Hookes Law:

fij = kij(lij − ‖xi − xj‖)
xi − xj

‖xi − xj‖
. (2)

The term lij constitutes the rest length of the spring, and kij is the spring
constant that determines the elastic property of the spring. The non-linearity of
the MSDM stems from the term ‖xi − xj‖.

One method to numerically integrate equation (1) is the Verlet integration
scheme. It is a particularly good choice as the updated position for each particle is
calculated solely from the force vector f and the particle’s two previous positions.
Moreover, it can easily be computed for each particle in parallel. The Verlet
integration is given by:

x(t + Δt) = 2x(t) − x(t − Δt) +
f(t)
m

(Δt)2 (3)
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Artificial damping can be introduced in an ad-hoc manner [10].

x(t + Δt) = (2 − λ) · x(t) − (1 − λ) · x(t − Δt) + f(t)(Δt)2. (4)

2.3 Parallel Implementation Strategies

As presented in [7], on the gpu there are two implementation strategies utilizing
either an implicit or explicit representation of the springs connected to a given
particle.

The explicit strategy is the more general of the two strategies. For each par-
ticle it maintains a list of indices to particles to which it is connected. Two
memory accesses are required to look up the position of each neighboring
particle; one memory access to acquire the index of the neighbor particle,
and one further memory access to determine the position of the particle at
that index. Using this data structure it is straight-forward to represent any
given connectivity of the MSDM.

The implicit strategy on the other hand requires datasets in which the par-
ticles are located in a regular three-dimensional grid (or structured mesh).
Here, a particle can be connected to its neighboring particles only. For any
particle, the addresses of neighbor positions can now be calculated by using
a fixed set of constant offsets. Hence only one memory access is required to
retrieve the position of each neighbor particle. To represent arbitrary mor-
phology, particles are marked either active or inactive and only the active
particles are considered part of the desired morphology.

3 Methods

This section describes how the strategies presented in section 2.3 for solving the
MSDM have been implemented in CUDA.

The basic layout of test data used in this paper is a grid of particle posi-
tions represented as a 3D float array. Only adjacent particles in the 3D grid are
connected by springs. Spring rest lengths are thus fixed as illustrated in Fig. 2.

(a) (b) (c)

Fig. 2. Categorization of neighbors for a particle in the center of a 3 × 3 × 3 cube.
(a) rest length 1, (b) rest length

√
2 and (c) rest length

√
3. The configurations shown

denote spring groups 1, 2 and 3 respectively.
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3.1 Implicit Addressing

The computation associated to each particle, both active and inactive, is ad-
dressed by a single thread in CUDA. From the thread and block ids in the grid a
mapping is established to the corresponding memory address of the particle. A
neighbor mask (bitpattern) is used to differentiate active and inactive neighbors.
Figure 3 shows an example of the bitpattern for a particle which is connected to
three neighbors. Each bit is tested iteratively using logical operators. If the en-
tire neighbor mask is zero, the particle corresponding to the current thread is an
inactive particle. Hence, a single memory access determines whether a particle
is active or inactive.

0123456789101131 30 18 17

. . .. . .

Fig. 3. Neighbor mask for a particle connected to neighbors 1,2 and 10. Spring group 1
is represented as the lowest 6 bits for which it is known that the rest length is equal to
1. Similarly, bits 6-17 represent spring group 2 with a rest length of

√
2. Spring group

3 is omitted in this example.

The two most recent arrays of the particle positions are required to compute
equations (2) and (4). These arrays should be accessed either using cached device
memory or shared memory. Memory access can easily be cached, whereas utiliz-
ing shared memory requires us to manually handle memory transfer to shared
memory from device memory.

Shared Memory Implementation: The “rectangular” subset of device memory
corresponding to the threads (particles) in the current block is initially copied
from device memory to shared memory from where it is subsequently accessed.
The shared memory layout is padded with an additional layer of particles in order
for the threads (particles) at the border of the block to access their neighbor
particles corresponding to a different block. This is illustrated in figure 4. To
access neighbors of different depth, three rectangles like the one depicted in
figure 4(b) is copied to shared memory for each block initially in the kernel.
This strategy limits access to device memory to a few reads per particle.

Memory Coalescence: The particles are represented in memory as three floats
for position and a 32-bit word for the neighbor mask. As it is possible to encode
the 32-bit neighbor mask in a float, all information for a particle fits neatly into
a float4 datatype. By using a block width to a multiple of 32, the criteria for
memory coalescence is supported for all groups of 32 threads executed in parallel.

3.2 Explicit Addressing

The basic layout of data for the explicit addressing strategy is a compact array
of particle positions containing only active particles. This array is accessed from
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Fig. 4. Copying particle positions from device to shared memory. (a) depicts the block
of particles of width bw and height bh, (b) shows the additional red frame of neighbor
particles, (c) the blue particles are responsible of reading the red frame into shared
memory.
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Fig. 5. Explicit connections for particles pi−1, pi and pi+1

device memory using a 1D cache. Shared memory is not used due to the lack of
locality in general unstructured meshes.

For each thread a list containing the particle indices of the corresponding
particle and all connected particles is stored explicitly as illustrated in Fig. 5.
The list has a predetermined maximum number of spring entries to allow easy
indexing into an array of lists based on the thread and block id. Furthermore,
a counter is included in each list to indicate the number of springs actually
present. This data structure makes run-time changes to the topology very easy
to support, i.e. to erase or add springs due to cutting or suturing.

A secondary list is maintained to provide per spring parameters such as spring
stiffness and rest lengths. In the special case that particles are known to be laid
out in a regular grid/structured mesh, this secondary list can be omitted; spring
rest lengths can be determined from the corresponding spring group indicated
by an individual counter per group. In this special case we furthermore assume
that the spring stiffness is constant for all springs.

Memory Coalescence: Memory coalescence is not achieved if the neighbor lists
are simply concatenated and stored in memory. The reason is that there is a
separation of 32∗(nmax+2) bits between the individual words read in parallel by
the threads. Ie., the necessary contiguous memory layout is not present. In order
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(a) Data layout not supporting memory coalescence since indices,
counters and neighbor addresses are store linearly for each thread.
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(b) Data layout supporting memory coalescence. By storing
the neighbor lists “vertically” yields consecutive indices, coun-
ters and neighbor addresses for threads in parallel.

Fig. 6. Memory layout ensuring coalesced access for the explicit strategy

to have consecutive threads read consecutive memory addresses, it is necessary to
first store all 32-bit indices, followed by the counter and the neighbor addresses.
In a sence, the lists are stored “vertically”. This is illustrated in Fig. 6. Again,
a block width of a multiple of 32 fullfills the memory coalescence criterias for all
groups of 32 threads.

3.3 Test Setup

To test the SMDM implementations we selected two datasets; a compact box and
a realistic morphological dataset of a heart obtained from 3D MRI and previously
used in a cardiac surgery simulator [11]. Both datasets, listed in Tab. 1, are
stored as a binary three-dimensional grid indicating whether a voxel is part of
the morphology or not. This data layout can be used by both the implicit and
explicit layout and is thus suitable for comparison. The box dataset is optimal
for the implicit method since no inactive particles are present.

Consistent with the OpenGL implementation to which we intend to compare
performance [7], all implementations use a fixed connectivity pattern consisting
of spring groups 1 and 2.

Furthermore, tests were made on boxes of different sizes in order to investigate
how performance scales with increasing input size. This was done only for the
explicit implementations as the ratio of active vs. inactive particles is irrelevant
for this method.

The test platform was Windows XP 32bit, AMD 64 FX55 at 2.61Ghz on MSI
K8N-Diamond, PCI-Express x16, GeForce 8800 GTX GPU (768 MB RAM),
CUDA Release 1.1, Nvidia Forceware v. 169.21.
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Table 1. Technical data about datasets

Dataset Total Particles Active Particles Springs Ratio Active/Total
Heart 140760 29449 220495 0.209
Box 32768 32768 280240 1.00

4 Results

Results of simulation runs for the described strategies are summarized in Fig. 7.
For comparison results of an OpenGL implementation of the implicit strategy
are also included.

The execution times for the explicit methods run on boxes of varying sizes
are shown in Fig. 8.

Box Heart
0

1000

2000

3000

4000

5000

6000

4903

4415

1905

1159

4476

1067

4810

21261963 2071

3902
4323

5333 5515
OpenGL
Implicit Device

Implicit Shared
Implicit Cached

Explicit Device
Explicit Cached
Explicit Cached Grid

Fr
am

es
 p

r. 
Se

co
nd

Fig. 7. Chart of performance for the original OpenGL and the implicit and explicit
CUDA implementations. For the implicit method three memory strategies (device,
shared, and cached) have been tested, while the explicit method is tested for device
memory access and cached access. The cached is further divided into a general and a
version optimized for grids, the “Explicit Cached Grid”.

5 Discussion

In this paper we investigated various GPU implementations of the MSDM using
CUDA. The purpose was to evaluate whether previously published results utiliz-
ing OpenGL for GPGPU could be reproduced or even improved, and to evaluate
if the recommended strategies obtained using OpenGL transfers to CUDA.

Our results (Fig. 7) showed that the fastest CUDA implementation, the strat-
egy utilizing cached explicit memory addressing, outperforms or performs equally
well as the fastest OpenGL implementation.

In [7] it was reported that the OpenGL implementation using explicit address-
ing achieves only 50% of the performance obtained using implicit addressing due



Exploring Parallel Algorithms for Volumetric MSDMs in CUDA 57

to the extra memory indirection. For this reason implicit addressing was recom-
mended over the explicit version. Using CUDA we notice however that this
recommendation must be “inverted” to instead recommend explicit addressing.
This change in recommendation has several positive side effects, most interest-
ingly added flexibility and ease of implementation. The explicit method is very
flexible since it can represent arbitrary geometry and easily allows for run-time
changes of topology. Moreover, it turns out that the simplest of the implemented
strategies performs superiorly.
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Fig. 8. Execution times for boxes of different sizes using the three explicit methods

Examining Fig. 7 in more detail, it becomes clear that the implicit method
in CUDA does in fact perform well on the box dataset and only dissatisfactory
on the heart dataset. Using OpenGL on the other hand, the implicit method
performs comparably on both dataset. The reason is that the implicit method in
CUDA cannot eliminate computation for inactive particles as effectively as the
OpenGL implementation, which utilizes a hardware accelerated mask. For the
box dataset this does not show since it contains no inactive particles.

Figure 8 shows that the execution times scales linearly with increasing input
size (more than 50.000 active particles). For small datasets this may not be the
case since small datasets do not utilize the parallel powers of the GPU fully.

From the discussion above it is evident that CUDA is a very interesting new
platform to compute MSDMs in a surgical simulator. This requires however that
additional aspects of a simulator, such as visualization and haptic feedback, are
also adapted to the GPU. Fortunately, several techniques to implement such
functionality are already described [6] [12] [13].
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