
Cardiac Surgery Simulation

Graphics Hardware meets Congenital Heart Disease

Jesper Mosegaard

PhD Dissertation

Department of Computer Science

University of Aarhus

Denmark

Cardiac Surgery Simulation

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

PhD Degree

by
Jesper Mosegaard
October 7, 2006

iv

Abstract

The human heart has a very complex morphology, and combined with a
congenital heart defect it becomes a challenge to understand the spatial
arrangement in full. Pediatric cardiac surgeons must have a very good un-
derstanding of the morphology of the heart of a patient prior to a surgical
procedure, including an overview of potential surgical strategies related to
the heart defect.

In this PhD-thesis I present methods for the implementation of a real-
time simulator for surgical procedures on congenital heart defects. A pro-
totype has been developed and evaluated in cooperation with pediatric car-
diac surgeons. The thesis is divided into three main parts; a presentation
of surgical procedures in relation to congenital heart defects, an overview of
the research field of surgical simulation, and lastly my main research con-
tributions on the acceleration of surgical simulation through utilization of
programmable graphics hardware, as well as a preliminary evaluation of the
simulator in incision planning.

Four specific research contributions are presented. The first contribu-
tion presents methods to utilize the graphics processing unit (GPU) for
soft-tissue deformation, resulting in a speedup of 20-30 times compared to
a similar CPU implementation. The second contribution is a mapping from
the simulation to an arbitrary visual surface, allowing a more detailed vi-
sual surface to be deformed by the GPU-based simulation in real-time on
the GPU. The third contribution is a method for haptic-interaction with the
GPU-based simulation, taking the slow memory transfer from GPU to CPU
into account. The fourth contribution is the evaluation of the surgical simu-
lator for training and pre-operative incision planning. This clinical research
has been made possible through the development of a working prototype.

v

vi

Acknowledgments

First of all thanks to Thomas Sangild Sørensen who has been my main
collaborator throughout my PhD-project. Thanks also to pediatric heart
surgeons Doctor Ole Kromann Hansen and Professor Vibeke E. Hjortdal
from Aarhus University Hospital. Through the last four years they have
introduced me to the topic of heart surgery, let me experience real surgical
procedures, and participated in technical workshops. Naturally thanks to
my adviser Peter Møller Nielsen. I am grateful for the time spend by Peter
Bøgh Andersen, Michael E. Caspersen, Peter Møller Nielsen and Rory An-
drew Wright Middleton for proof-reading. I am very grateful for the grant
from the Danish Heart Foundation which enabled us to hire two student
programmers to work on the simulator in the last 8 months of my PhD
project. Thank you also to the current and previous people in and around
the Centre for Advanced Visualization and Interaction where I have had my
office and daily routine for the last four years which has been very enjoyable.
As part of this PhD I have also participated in the activities of the Centre
for Pervasive Healthcare which has represented a nice variation in topics of
computer science.

Lastly, thanks to my family and friends for allowing me to talk endlessly
about my passions and difficulties as a PhD-student. Thank you to my
parents, Marianne and Per, my sister, Lene, and my girlfriend, Dorte, for
everything else in life.

Jesper Mosegaard,
Aarhus, October 7, 2006.

vii

viii

Contents

1 Introduction 1
1.1 Mikkel . 1

1.2 Problem Formulation . 2
1.2.1 Clinical Problem Formulation 3
1.2.2 Computer Science Problem Formulation 4

1.3 Overview of the Thesis and Contributions 5

I Surgery on Hearts With Congenital Defects 9

2 The Heart 11
2.1 The Healthy Heart . 11

2.2 Learning to Become a Surgeon 13
2.3 Heart Defects . 14

2.3.1 Open-Heart Surgery 14

2.3.2 Ventricular/Atrium Septal Defect 16
2.3.3 Double Outlet Right Ventricle 16

2.3.4 Single Ventricular Anomalies 17
2.4 Narrowing Down What to Simulate 18
2.5 Categories of Usage . 20

2.5.1 Pre-Operative Planning 20
2.5.2 Education and Training 21

II Surgical Simulation 25

3 An Overview of the Research Field 27
3.1 Datasets and Segmentation 27

3.2 Representation . 28
3.3 Simulation Engine . 29

3.4 Visualization and Display . 31
3.5 Interaction and Haptics . 31

3.5.1 Cutting . 31

3.5.2 Haptics Rendering . 33

ix

x CONTENTS

4 Surgical Simulators 35

4.1 Needle-Based Procedures . 35

4.2 Minimally Invasive Surgery 36

4.3 Open Surgery . 38

4.4 Medical Simulation Frameworks 40

4.5 Evaluation Studies . 41

5 Calculating Deformation 43

5.1 Finite Element Method . 43

5.1.1 Theory of Elasticity 44

5.1.2 Energy Function . 45

5.1.3 Finite Element Solution 46

5.1.4 Solving the Linear System of Equations 47

5.1.5 Alternative FEM Formulations 48

5.1.6 Examples of Use . 49

5.2 Spring-Mass Models . 49

5.2.1 Spring-Mass Formulation 49

5.2.2 Solving the Second Order Differential Equation 51

5.2.3 Stability . 53

5.2.4 Spring Topology Issues 54

5.3 Comparing FEM and Spring-Mass 57

5.4 Real-Time and Complex Morphology 59

III The GPU Accelerated Surgical Simulation 61

6 General Purpose Computation on the GPU 63

6.1 Graphics Pipeline . 64

6.2 Vertex and Fragment Programs 65

6.3 High-Level GPU Programming 68

6.4 GPGPU and Performance Issues 68

6.5 Applications of GPGPU . 71

7 Surgical Simulation on Graphics Cards 73

7.1 Introduction . 73

7.2 GPGPU Concepts and Performance 74

7.3 Surgical simulation on the GPU 77

7.4 Implicit Finite Element Models 77

7.4.1 Sparse Banded Matrices 78

7.4.2 Sparse Unstructured Matrices 80

7.5 Explicit Models: Spring-Mass and Tensor-Mass Models 82

7.5.1 Alternative Spring-Mass Systems 84

7.6 Visualization and Interaction 86

CONTENTS xi

8 Spring-Mass on the GPU 89

8.1 Introduction . 89

8.2 Parallel Computation of the Spring-Mass System 90

8.3 GPU Pipeline . 91

8.4 Integration Loop on the GPU 92

8.5 Spring Connections and Force Computation 92

8.5.1 A Spring-Mass System with Explicit Connections . . . 92

8.5.2 A Spring-Mass System with Implicit Connections . . . 93

8.6 GPU Spring-Mass Performance Results 96

8.7 Interaction . 98

8.7.1 Probing . 100

8.7.2 Grabbing . 100

8.7.3 Cutting . 101

8.7.4 Interaction Results 102

8.7.5 Discussion and Conclusion of Interaction 103

8.8 Discussion and Conclusion of GPU Spring-Mass 103

8.9 Future Work . 104

9 Decoupling Visualization and Sim. 105

9.1 Introduction . 105

9.2 Previous Work . 108

9.3 Methods . 109

9.3.1 Grid Based Calculation of Deformation on the GPU . 109

9.3.2 One-to-One Mapping and Approximating Normals . . 110

9.3.3 Mapping using the Triangle Basis 112

9.3.4 Results . 117

9.3.5 Discussion and Conclusion 119

9.3.6 Future Work . 120

10 Haptic Feedback 121

10.1 Introduction . 121

10.2 Materials and Methods . 122

10.2.1 Hardware and Software Platforms 122

10.2.2 Spring-Mass Simulation on the GPU 122

10.2.3 Probing and Grabbing 123

10.2.4 Haptic Feedback . 124

10.3 Smooth Haptic Interaction . 126

10.3.1 Method . 127

10.4 Results . 127

10.5 Discussion . 128

xii CONTENTS

11 Building Virtual Models of the Heart 131
11.1 Segmentation . 131

11.1.1 Algorithm . 131
11.1.2 Imaging and Segmentation 132
11.1.3 Image Visualization 132
11.1.4 Software . 133
11.1.5 Discussion . 133

11.2 Models Suitable for Surgical Simulation 133
11.2.1 Obtaining the Volumetric Simulation Grid 133
11.2.2 Surface Visualization Processing 133
11.2.3 Discussion . 134

12 Incision Planning 137
12.1 Introduction . 137
12.2 Materials . 138

12.2.1 Patient-Specific Simulation 138
12.2.2 Generalized Incision Simulation 140

12.3 Methods . 141
12.3.1 Imaging . 141
12.3.2 Segmentation . 141
12.3.3 Simulation . 141

12.4 Results . 142
12.4.1 Patient Specific Scenario 143
12.4.2 Generalized training scenario 144

12.5 Discussion . 147

13 Conclusion and Future Work 151
13.1 Conclusion and Discussion . 151
13.2 Future Work . 153

Chapter 1

Introduction

In this chapter I will motivate the real world issues dealt with in this thesis
through a specific case of a boy named Mikkel, who had heart surgery be-
cause of a congenial heart defect. Following that, I will define the problem
formulation both from a clinical as well as a computer science perspective.

1.1 Mikkel

Mikkel is a four year old boy from Denmark. He is clearly a charming little
boy, full of fun. But Mikkel is not all well; when Mikkel plays games with
his older brothers they must be quite careful and they are very protective
of him. Mikkel will sometimes tell his brothers; “Feel my heart, it’s beating
real hard”. In Mikkel’s case this is quite a serious problem since he is born
with a congenital heart defect - more specifically a small hole inside his
heart. In the television program “When the heart of Mikkel was stopped”1

[116] we, as viewers, get a close look at the issues in heart surgery - both at
a personal level through Mikkel and Mikkel’s parents, and at a professional
level through the pediatric cardiac surgeon Vibeke Hjortdal. It becomes
very clear from all people involved, perhaps except little Mikkel, that heart
surgery is a serious matter. The surgeon Vibeke Hjortdal says to the parents
of Mikkel (First the original danish transcript, then the English translation):

“Det plejer jo at gå godt med de her operationer - de fleste gange.
Men når jeg kun siger de fleste gange og ikke alle gangene, så er
det jo selvfølgelig et udtryk for, at engang imellem så går det ikke
godt. Og det kan gå helt galt, han kan dø under operationen -
det sker heldigvis meget meget sjældent.”

1The author encourages any reader to view the broadcast since it is easily available
on the Internet. The broadcast is in danish, but gives a very good view of the surgical
procedure even for the English speaking.

1

2 CHAPTER 1. INTRODUCTION

“These surgical procedures usually succeed - most times. But
when I only say most times, and not every time, it is of course
a reflection upon the fact that sometimes such surgery is not a
success. It can go all wrong - he can die during the surgery.
Fortunately, that happens very, very rarely.”

To correct for the congenital heart defect of Mikkel, Vibeke Hjortdal must
open his chest, stop the beating of his heart, and make an incision into his
heart to reach the hole. The hole will then be patched by suturing a small
piece of artificial material to the edges of the hole. In Vibeke Hjortdals own
words;

“Man er jo nødt til at være perfektionist når man står og laver
det her [kirurgi]. “Attention to deails”; det der med virkeligt at
have sans for detaljerne. Det er så lidt der skal til, før man er ude
på den forkerte side af hvad der er muligt hos sådan nogle små
størrelser. Så hver eneste lille ting man laver, det skal bare laves
perfekt; alt lige fra åbne brystkassen, til at få de her katetre
puttet ind i blodårene - det hele skal bare være rigtigt, fordi
summen af små ting der er gået forkert kan være nok til at vælte
det store læs og få operationen til at gå galt istedet for at gå
godt. Det er helt oplagt; man er nødt til at være perfektionist.”

“You have to be a perfectionist when you do this kind of thing
[surgery]. “Attention to details”; the thing about having a flair
for details. It takes so little to be on the wrong side of what is
possible with these small children. Therefore everything you do
has to be perfect; everything from opening the chest, to inserting
these catheters into the blood-vessels - everything needs to be
done correctly, because the sum of small mistakes can result in
total failure instead of success. It is so very obvious; one has to
be a perfectionist.”

1.2 Problem Formulation

The PhD has come to life in the cross-section between a real world problem
for pediatric cardiac surgeons and the investigation into technical challenges
derived from these problems. The process of dealing with these problems has
thus been an interdisciplinary cooperation with pediatric surgeons, M.D. Ole
Kromann Hansen and Professor Vibeke Hjortdal, Aarhus University Hospi-
tal. Ole Kromann and Vibeke Hjortdal represent both the users and experts
in the problem area. Through his interdisciplinary background, a Masters
in Computer Science and a PhD in medicine, Thomas Sangild Sørensen has
played the role of bridging the clinical world and computer science. Con-
cerning the role of my PhD-project I have primarily kept a computer science

1.2. PROBLEM FORMULATION 3

perspective deriving interesting computational problems from the problem
area with general applicability. The clinical problem area has been a great
motivation and source of challenging problems in the development of the
surgical simulator prototype. Data acquisition has mainly been done in co-
operation with the MR-center from Skejby Hospital. Our cooperation has
resulted in a synergistic effect with both clinical and technical results. In
the next two sections I present the problem formulation from a clinical per-
spective as well as from a technical perspective. The major part of this
thesis is naturally of a technical nature, but is very tightly bound to the
requirements of the real-world problem of the surgeons.

1.2.1 Clinical Problem Formulation

Congenital heart defects are present in about one percent of live births and
are the most common malformations in newborn children. In the last decade
overall mortality rates have dropped to just 5% but in the case of complex
defects, the mortality rate remains as high as 20-30%. One of the issues is
that the heart is a complicated organ since both functionality and especially
morphology of the heart is very complex. A congenital heart disease can
introduce further complexity due to the inherent malformation. It is conse-
quently difficult to get an overview of the spatial structure and morphology
of the malformed heart. An accurate and detailed understanding is critical
to the diagnosis and the very careful planning of surgical strategies. Sur-
geons must have an accurate understanding of the three-dimensional layout
of the different components of the heart. The shape of the heart must also be
understood in relation to the required functionality and the different poten-
tial strategies that can be used to correct for the defects. In general, there
are three ways to reduce mortality in complex congenital heart diseases;
through improved diagnosis, better early training of surgeons, and through
better pre-operative planning. This PhD project aims to improve training
and pre-operative planning through surgical simulation. In an interdisci-
plinary cooperation with pediatric cardiac surgeons it is our goal to build
a surgical simulator specifically for pre-operational planning and training
for surgical procedures on children with congenital heart defects - such as
Mikkel from the previous section.

Problem Surgery on the heart of a child with a congenital heart defect
requires good understanding of the heart morphology in relation
to the steps of potential surgical strategies.

Hypothesis Going through the surgical procedure, experimenting and ex-
ploring the heart in a virtual setting, provides a better under-
standing of the heart morphology in relation to potential surgi-
cal strategies in both pre-operational planning and in training
in general.

4 CHAPTER 1. INTRODUCTION

Method Develop a working prototype of a real-time surgical simulator
for congenital heart defects.

Limitations Although we have a tight interdisciplinary cooperation, the ma-
jor goal of the clinical problem formulation in terms of this PhD-
thesis is as a facilitator for interesting aspects of computer sci-
ence. As such a formal clinical evaluation and implications of
the surgical simulator is not given primary attention in the re-
maining thesis. We have conducted a preliminary evaluation of
the simulator for incision planning as presented in chapter 12.

1.2.2 Computer Science Problem Formulation

A simulation is an artificial model of a real procedure, phenomenon or sys-
tem. The simulation defines rules of behavior that represent the real phe-
nomena to a certain degree. Frasca Gonzalo has this simple definition of a
simulation:

“Simulation is the act of modeling a system A by a less complex
system B, which retains some of A’s original behavior” [68]

What this definition does not cover is the reason for doing simulation. Often
a simulation is used in training, recreation of real situations or prediction of
real world phenomena. In those cases there are many reasons to simulate
a given procedure as an alternative to performing it in real life. Generally
the real procedure might not be viable economically or ethically, and the
elements needed for the procedure might not be easily available. According
to Gorman [84], the field of surgical simulation began to gain real respect in
the field of surgery in the nineties.

We often restrict the scope of a simulation based on the final scenario of
use and the resources available to the simulation. Considering a computer-
based simulation these resources are in the form of computational power and
allowed execution time. We must therefore divide the resources amongst
levels of importance for the simulation, i.e. a specific aspect of a simulation
might be essential to one scenario of use, and indifferent to another.

Over the years, a variety of simulations have been constructed for differ-
ent needs. Physical phenomena, such as colliding galaxies (e.g. the merger
of the Milky Way and the Andromeda galaxies from 2001 [61]) and aero-
dynamic properties (e.g. improving the shape of Ferrari Formula One Cars
[124]) are classic examples, but also social phenomena, such as panic in
crowds, have been simulated to design better emergency plans [92].

The clinical problem formulation defined above very clearly transfers to
technical issues that are at the edge of what the field of surgical simulation
can do. There has been a constant push towards the simulation of more
detailed and more realistic surgical procedures. The heart in particular

1.3. OVERVIEW OF THE THESIS AND CONTRIBUTIONS 5

is such a complex organ that previous methods have not been adequate
for a surgical simulator on the current generation of hardware. Another
aspect of surgical simulation is the push towards open surgery simulators,
i.e. opening up the patient through surgery. Open surgery has traditionally
been considered the most difficult type of surgery to simulate. Although I
do not deal with open surgery in general, heart surgery is considered open
surgery and many of the techniques developed are generally applicable.

Problem Simulating and visualizing tissue deformation in models with
complex morphology is not fast enough with existing methods
and hardware. Heart surgery is such a case, and has thus not
previously been simulated.

Hypothesis Through utilization of graphics hardware, a surgical simulator
for complex morphology can be constructed - thereby meeting
the demands of the previous item.

Method Develop and evaluate the technical components for a GPU-based
surgical simulator including soft-tissue simulation, visualization
and haptic-interaction.

Limitations The developed techniques should be generally applicable in
physics based animation.

1.3 Overview of the Thesis and Contributions

This thesis is divided into three parts. In part I the discipline of heart
surgery on children with congenital heart diseases is introduced. The reader
should thereby be able to understand the clinical background for developing
tools within the limitations and challenges of training and preparation of
surgical procedures. Part II presents the research fields of surgical simu-
lation. This part will frame the specific contributions of GPU accelerated
surgical simulation presented in the last part III. In part III our research
contributions based on the development of the GPU accelerated surgical
simulator for surgical procedures on congenital heart defects are presented.
The last part is mainly based on published papers. To get an overview of the
categories of contributions of this thesis I present them here with references
to publications and chapters of presentation.

GPU Accelerated Spring-Mass Systems

Implementing Spring-Mass systems using the computational resources of
modern GPU’s, with surgical simulations as one area of application, has
been presented in two full papers:

6 CHAPTER 1. INTRODUCTION

[4] Jesper Mosegaard, Peder Herborg, and Thomas Sangild Sørensen.
A GPU accelerated spring-mass system for surgical simulation.
In Proceedings of Medicine Meets Virtual Reality 13. Studies in
Health Technology and Informatics, 111:342-348, January 2005.

[5] Jesper Mosegaard and Thomas Sangild Sørensen. GPU accel-
erated surgical simulators for complex morphology. In IEEE
Virtual Reality, 147-154, 323, March 2005.

The initial paper [4] dealt with a single method for implementing the Spring-
Mass system and focused on clinical use. In [5] we presented and compared
two methods of implementing the Spring-Mass system (of which one had
been presented in [4]). In the context of this thesis, the two papers have
been merged to form chapter 8.

An introduction to the topic surgical simulation on the GPU in general
as well as an analysis of GPU performance was published as a full paper:

[10] Thomas Sangild Sørensen and Jesper Mosegaard. An introduc-
tion to GPU accelerated surgical simulation. In Matthias Hard-
ers and Gábor Székely, editors, Biomedical Simulation: Third
International Symposium, ISBMS 2006, volume 4072 of Lecture
Notes in Computer Science, 93-104, 2006.

The paper [10] presents a combined introduction and survey of the com-
ponents available for surgical simulation on the GPU; calculation of tissue
deformation, visualization and haptics. This discussion includes a short
presentation of our work implementing the Spring-Mass system. The paper
is presented in this thesis in chapter 7 as an introduction and overview of
previous work within GPU accelerated surgical simulation in general.

Decoupling of Visualization and Simulation on the GPU

To visualize the Spring-Mass simulation we have developed a mapping from
the simulation to an arbitrary surface - in our case motivated by the desire
to visualize a smooth and detailed surface based on a more jagged simulation
arranged in a grid. The GPU-based technique has been published in a full
paper:

[6] Jesper Mosegaard and Thomas Sangild Sørensen. Real-time de-
formation of detailed geometry based on mappings to a less de-
tailed physical simulation on the GPU. In Proceedings of Eu-
rographics Workshop on Virtual Environments, volume 11, 105-
111, 2005.

The paper [6] presented our results in a general setting but with the surgical
simulation as one of the examples. The content of the paper is presented in
chapter 9.

1.3. OVERVIEW OF THE THESIS AND CONTRIBUTIONS 7

Haptic Feedback for the GPU based Surgical Simulator

Using haptic interaction with the GPU based surgical simulator is a chal-
lenging issue, since communication from GPU to CPU can easily become a
bottleneck. We developed effective techniques for haptic-interaction in:

[9] Thomas Sangild Sørensen and Jesper Mosegaard. Haptic Feed-
back for the GPU-based Surgical Simulator. In Proceedings of
Medicine Meets Virtual Reality 14. Studies in Health Technology
and Informatics, 119:523-528, 2006.

This paper is presented in chapter 12 in a slightly extended version.

Development of the Surgical Simulator as a Working Prototype

These contributions focus on the demonstration of the simulator as a work-
ing prototype through a SIGGRAPH video publication in 2005 and as an
emerging technology and technical sketch at SIGGRAPH 2006:

[7] Jesper Mosegaard and Thomas Sangild Sørensen. Technical as-
pects of the GPU accelerated surgical simulator. In SIGGRAPH
Application Sketches, Boston, USA, 2006. in press.

[8] Thomas Sangild Sørensen and Jesper Mosegaard. Surgical plan-
ning in congenital heart disease by means of real-time medical
visualisation and simulation. In ACM SIGGRAPH Computer
Animation Festival, 2005.

[11] Thomas Sangild Sørensen and Jesper Mosegaard. Virtual open
heart surgery - training complex surgical procedures in congeni-
tal heart disease. In ACM SIGGRAPH Emerging Technologies,
2006.

The development of a simulator prototype has been a key element in the
project, enabling us to cooperate closely with the pediatric heart surgeons
and other clinical personnel. This interdisciplinary cooperation has resulted
directly in the clinical contributions of the next section. Coming full circle,
the discussions and clinical evaluation with our surgeons has had positive
influence on the development of robust generic technical components. The
concrete results of developing a prototype is naturally not presented in writ-
ten form, but can be investigated on the included DVD through various
videos of the simulator in action (in various generations of development).

Clinical Evaluation of the Surgical Simulator for Incision Planning

Results of our preliminary clinical evaluation have been presented as an
abstract combined with an oral presentation and later as a journal article:

8 CHAPTER 1. INTRODUCTION

[12] Thomas Sangild Sørensen, Jesper Mosegaard, Gerald F. Greil,
Ole Kromann Hansen, and Vibeke E. Hjortdal. Preoperative
planning by surgical simulation on patient-specific high-resolution
virtual models. In The Fourth World Congress of Pediatric Car-
diology and Cardiac Surgery, volume 4, 230, 2005.

[13] Thomas Sangild Sørensen, Gerald F. Greil, Ole Kromann Hansen,
and Jesper Mosegaard. Surgical simulation - a new tool to eval-
uate surgical incisions in congenital heart disease? Interactive
Cardiovascular and Thoracic Surgery, in press, 2006.

These results are presented in chapter 12 as an extended version of the
journal article [13].

Part I

Surgery on Hearts With
Congenital Defects

9

Chapter 2

The Heart

The Heart Center Encyclopedia [46] has in-depth information for nonpro-
fessionals about the heart, congenital heart defects, and surgical strategies.
Where nothing else is noted, the overview provided of the heart and heart
diseases in this thesis is based on this encyclopedia and discussions with
pediatric surgeons.

2.1 The Healthy Heart

A simplified drawing of the heart is shown in figure 2.1. What the figure
does not show is the actual size of a heart. In the small children I consider
in this thesis, the heart is about the size of a table tennis ball - making
it a very small structure to work on. The role of the heart is to sustain
the body with a circulation of blood, essentially working as a pump. The
heart-functionality is divided into the right and left part (of the patient),
separated by the septum1. Each part is again divided into two chambers;
an atrium and a ventricle.

The flow of the blood is a rather complicated system, please inspect figure
2.1 and 2.2 during the following explanation. As seen from the outside of
the heart, the atrium receives blood while the ventricle sends out blood.
The left part of the heart circulates oxygen-rich blood from the lungs to
the rest of the body, while the right side of the heart circulates oxygen-
poor blood from the body to the lungs. In the case of the left part of the
heart circulation, blood comes from the lungs through the pulmonary veins
to the left atrium. From here, the blood goes through the mitral valve to
the left ventricle, and out through the aortic valve to the aorta, the single
largest blood vessel in the body. In the case of the right part of the heart
circulation, the blood comes back from the body through the inferior vena
cava and the superior vena cava to the right atrium. From here, the blood
goes through the tricuspid valve to the right ventricle, and finally through

1from Latin; “something that encloses”

11

12 CHAPTER 2. THE HEART

Aorta

Superior

Vena Cava

Inferior

Vena Cava

Tricuspid

Valve

RV
Ventricular S

eptum

LV Aortic

Valve

Mitral

Valve

ApexPulmonic

Valve

LA

RA

Pulmonary Artery

Figure 2.1: Basic Anatomy of the heart. LA: Left Atrium, RA: Right
Atrium, LV: Left Ventricle, RV: Right Ventricle. Blue colors represent parts
of the heart with oxygen-poor blood, and red colors represent parts of the
heart with oxygen-rich blood. Image based on [46]

Figure 2.2: Flow of blood in a normal heart, symbolized by black arrows.
Image based on [46].

2.2. LEARNING TO BECOME A SURGEON 13

the pulmonic valve and out through the pulmonary arteries to the lungs.
These two parts correspond to the two circulatory systems of the body; the
systemic circulation from heart to the body and back, and the pulmonary
circulation from the heart to the lungs and back.

Around the heart and the roots of the major blood vessels lies a thin
membrane, called the pericardium. Between the heart and the pericardium
there is fluid to allow the heart to beat with low friction.

As indicated by this very short overview of the heart, it has a relatively
complex shape (or morphology). To model even a basic representation of
the healthy heart would require a high degree of geometric detail. Moving
down a level, the tissue of the heart in itself is also a complicated structure,
consisting of three layers of tissue with distinct physical characteristics as
well as coronary arteries and the electrical system. The tissue is generally
non-homogeneous due to muscle fibers in the heart.

2.2 Learning to Become a Surgeon

In this section I give a short introduction to the process of learning surgery
in general. Through initial studies a medical student has a basic theoretical
knowledge of surgery. In later studies of surgery, it is common for students
to use a week operating on pigs or perhaps cadavers. Practicing to become
a good surgeon will take many years though, as this is very much a practical
skill that has to be learned by doing. The general teaching paradigm in
surgery is:

See one, do one, teach one

This is an indication of the fact that surgeons specializing within a surgical
discipline are taught through the principle of a master-apprentice relation-
ship. The master surgeon will take an apprentice and this apprentice will
be taught surgery through real surgical procedures by the master-surgeon.
The apprentice will start out observing the master surgeon, “See one”, and
will later be allowed to try basic parts of the procedure, “do one”. Slowly he
will be given more responsibility and in the end, the apprentice is allowed to
do entire surgical procedures on his own. When the apprentice has reached
the proficiency level of master-surgeon, he himself can take on an appren-
tice; “teach one”. The above saying is also an indication of the relative risk
involved in going from having seen one to actually do one and finally teach
one based on that knowledge.

At Aarhus University Hospital I have observed this master-apprentice
principle in full. Vibeke E. Hjortdal was an apprentice of Ole Kromann
Hansen, and would in most cases begin the surgical procedures I observed.
She herself had an apprentice, who was allowed to do some basic parts of the

14 CHAPTER 2. THE HEART

Figure 2.3: The operating theatre. Photograph by Doctor Ole Kromann
Hansen

surgery and assist Hjortdal. If problems arose, Kromann would be called in
to help Hjortdal and her apprentice.

2.3 Heart Defects

The following section gives an overview of three selected heart defects and
the associated surgical strategies. This overview is by no means exhaustive,
as there are over 3000 different types of diagnosises of congenital heart de-
fects. For practical reasons, the key-terminology is introduced so that the
morphology can later be discussed in detail with respect to the congenital
malformations of actual patients in chapter 12. Presenting heart defects and
surgical strategies is also important to understand the premises of creating
a surgical simulator for this type of surgery, and to further underline the
fact that malformed hearts have a very complex spatial arrangement.

2.3.1 Open-Heart Surgery

The treatment for heart defects considered in this thesis is through surgery,
and more specifically through open-heart surgery. In open heart-surgery
the chest is opened, the child placed in a heart-lung bypass machine, and
then finally the heart is opened. When the child has been sedated, the
child is taken to the operating theater where the surgical procedure is going
to take place, see figure 2.3. After the initial covering up and cleaning
of the surgical area, the surgeon is ready to begin. He initially makes an
incision in the chest to expose the sternum, a bone in the middle of the
chest. The sternum is then cut open with an electrical saw that does not
damage soft tissue. The chest is then forced open by a clamp, see figure
2.4 a). This creates the working environment in the chest-cavity for the
surgeon. While the surgeon is opening the chest he will inevitable destroy
small blood vessels. To minimize the bleeding, the surgeon often uses an

2.3. HEART DEFECTS 15

(a) Opening of the pericardium

(b) Overview with surgeons on either sides

(c) Heart lung machine attached, ready to
take over the circulatory function

(d) Opening of the heart

Figure 2.4: A series of photographs taken by Doctor Ole Kromann Hansen
from the initial phase of a surgical procedure

16 CHAPTER 2. THE HEART

electro-surgical instrument to make incisions in the tissue and at the same
time close potential blood vessels. The pericardium is opened next (again see
figure 2.4 a)), and stitched to the edges of the previously opened sternum.
This effectively raises the heart from within the chest, allowing for an easier
access to the heart. Until now, the heart has been beating, but for the next
step in the surgical procedure, where the heart is opened, it needs to be
stopped and emptied of blood. The next step is consequently to connect
the patient to a heart-lung machine which will take over the circulation and
oxygenation of the blood. Tubes are connected to the major arteries and
veins and the connections from the heart to these vessels are temporarily
closed, essentially bypassing the heart, see figure 2.4 b) and c). The heart is
stopped by injecting a very cold solution which hinders the electric signals
for beating and contains some nutrition for the bloodless heart, see figure
2.4 d). Notice how pale the heart is in figure 2.4 d) compared to figure 2.4
c). The heart itself can now be opened safely, and the surgeon can work in
a bloodless environment and on a stationary heart.

2.3.2 Ventricular/Atrium Septal Defect

The first category of defects we are going to consider is relatively simple.
Remember, the heart has a right side and a left side divided by the septum.
Each part again consists of two chambers, the atrium and the ventricle.
When there is a hole through the septum, connecting the two atria or the
two ventricles, the diagnosis is an atrium septal defect (ASD) or a ventric-
ular septal defect (VSD) respectively. These defects arise because the wall
between either the atria or ventricle does not finish forming in the devel-
opment of the baby and thereby leaves a hole. In some cases the ASD or
VSD will close by itself through the first couple of years, but if the hole has
not closed by the age of three, there is little chance of it closing by itself.
The symptoms of an ASD or VSD can be shortness of breath, easy fatigue,
and poor growth. Due to pressure differences between the two sides of the
heart, a VSD can cause severe problems sustaining the body with blood.
Both ASDs and VSDs are most commonly closed by an open-heart surgical
procedure where the hole is either closed directly with sutures or, if the size
and shape of the hole demands it, is closed through suturing of a patch to
the hole. This patch is made of gore-tex and will eventually be covered by
the patient’s own tissue.

2.3.3 Double Outlet Right Ventricle

Double Outlet Right Ventricle (DORV)[152] is our first case of a complex
heart defect. In the case of a DORV diagnosis, both the aorta and the
pulmonary artery originate from the right ventricle - from there the term
“double outlet”. Since the patient is still alive there is circulation; i.e. there

2.3. HEART DEFECTS 17

(a) The uni-ventricular
heart

RA

RV

LV

LA

(b) The normal heart

Figure 2.5: Single ventricular anomalies. In b) RA: Right Atrium, LA: Left
Atrium, RV: Right Ventricle, LV: Left Ventricle. Image from [46]

must be a connection from the right side of the heart to the left side of
the heart. This connection is often a Ventricular Septum Defect (VSD) as
described in the previous section. The goal in a corrective surgical procedure
is to do a bi-ventricular repair, where the left ventricle is (re-)connected to
the aorta and the right ventricle reconnected to the main pulmonary artery.
There are a number of different possible surgical strategies, which are often
first selected during the surgical procedure as they depend on numerous
morphological details of the heart. In the context of this thesis, I will only
discuss a strategy using an intra ventricular baffle. Through a small tunnel
(in this case a so-called “baffle”) of artificial material, the hole (the VSD) is
connected directly to the aorta. The aorta and left ventricle have thereby
been re-connected as is seen in a normal heart.

The patient case we will investigate in chapter 12 is diagnosed DORV.
More specifically the heart has a subpulmonary VSD. That is, the VSD is
located below the pulmonary as seen from the right ventricle of the heart.
The aorta and pulmonary artery are rotated in a side-by-side configuration
as seen from the apex of the heart, instead of above each other as is normal.
The aorta is furthermore to the right. That is, furthest away from the left-
ventricle. The intra-ventricular baffle which has a leak is therefore difficult
to repair, since it must transport blood quite a long way inside the heart.

2.3.4 Single Ventricular Anomalies

Our second complicated case is a uni-ventricular heart, see figure 2.5. That
is, a heart where one ventricle is severely underdeveloped - and the majority
of the circulatory function of the heart must be taken over by the other
ventricle (from that the term “uni”). We will consider the case where the

18 CHAPTER 2. THE HEART

right ventricle is the underdeveloped one, and the left ventricle has to take
over the circulatory function - this defect is called Hypoplastic right ventricle
[100]. This specific defect arises because the tricuspid valve between right
ventricle and right atrium did not open in the early embryonic weeks of the
baby’s life. During the growth of the baby, the closed ventricular valve means
that no blood is coming through to the right ventricle to force it to grow.
The result is a small (hypoplastic) and weak right ventricle. By similar
reasoning, a hypoplastic right ventricle also often results in a pulmonary
artery stenosis. That is, a narrowing of parts of the pulmonary artery.

In the uni-ventricular heart we have used in the simulator an additional
defect has arisen, namely a so-called discordant ventricular-arterial connec-
tion [144], meaning that the pulmonary artery and the aorta have switched
places. Instead of the aorta rising from the left ventricle it comes from the
(underdeveloped) right ventricle. Notice that this does not match the gen-
eral drawing of a uni-ventricular heart in figure 2.5. In our case the patient
has survived because there is a VSD connecting the underdeveloped right
ventricle to the left ventricle, thereby allowing blood to go through the aorta
to the body. In a previous surgical procedure this patient has had his pul-
monary vein banded (clamped smaller) so that the pressure of blood in the
circulation going to the lungs does not get dangerously high.

A uni-ventricular heart will generally undergo a surgical procedure to
maximize the effective utilization of the single ventricle to pump blood from
the lungs to the body and let the blood flow passively back from the body
to the lungs - bypassing the heart. Such a circulation is called a fontan
circulation. In the case of our patient, a specific type of fontan has been
done, namely a total cavopulmonary connection (TCPC) where a tunnel is
created in the right atrium and connected to the pulmonary artery.

2.4 Narrowing Down What to Simulate

In order to define precisely which parts of the surgical procedure to simulate,
we have to narrow down which aspects of the real phenomena we need to
represent. One perspective on this, with respect to surgical simulation, are
the three levels of simulation as presented by Richard Satava [169]. Satava
originally designates the three levels with the term generation, but I will
instead use the term level to emphasize the choice between levels, depend-
ing on the problem domain at hand instead of a pure hierarchical ordering
according to the evolution of surgical simulation. The term generation is
important though, since the three levels also reflect the overall advance in
technical development.

At the first level, only the morphological aspects are of interest as a geo-
metrical shape. Information used to re-construct a geometric representation
of the morphology is often retrieved by medical image modalities [163] such

2.4. NARROWING DOWN WHAT TO SIMULATE 19

as Computed Tomography (CT) or Magnetic Resonance Images (MRI). Al-
though the data is often retrieved in-vivo from patients or volunteers it can
also be retrieved ex-vivo based on plastified hearts which are often preserved
because of interesting features. Given our definition that a simulation mod-
els a of behavior in a system, a representation on Satava’s level one is to be
regarded as a pure visualization. The important concepts with regards to
our problem domain of a complex morphology for learning and pre-operative
planning, is the navigation and immersion in the 3D anatomical datasets as
opposed to looking at 2D medical images. In [174] Sørensen et al. showed
that the exploration of a static 3D model is a potential valuable tool for
pre-operative planning in the case of congenital cardiac defects.

The second level encompasses the geometrical shape and related concepts
from level one, but includes major physical properties such as tissue defor-
mation, bone carving, and the interaction with surgical instruments. At this
level, the scenario of use can be extended to include training, rehearsal and
experimentation. A system on this level is clearly a true simulation.

The third level deals with the additional functionality of tissue and or-
gans, e.g. blood flow, electrical signals and even cellular mechanisms. One
example of a level three simulation is the system discussed in [97] regarding
the simulation of a beating heart. The idea is to simulate the tissue down to
cellular size, computing the electrical signals of every single cell comprising
the pulsation of the heart. The electrical signals are computed by a dozen
differential equations and there are hundreds of thousands of coupled cells
in a complete heart. Such a simulation could e.g. be used to test for new
drugs to prevent arrhythmia since the functionality of the heart is simulated
to a degree allowing for prediction of the real phenomena. The point is that
knowledge exists that can explain the behavior of tissue exactly. An imple-
mentation of a mathematical model of the heart mechanics outside the scope
of surgical simulation has been presented in [141]. A complex finite element
based model is used as a simulation of a part of the heart beat. In reference
to the fact that the research community is still working hard on real-time
aspects of level two surgical simulators, a real-time level three simulation
for surgery is out of the scope of this thesis in specific and currently out of
the scope of contemporary research in general.

The three levels are not to be thought of as a hierarchy of better or worse
tools for learning and for information retrieval - but as different perspectives
on what to learn and what is necessary to learn. As mentioned earlier, one
of the strengths of simulation is that we can focus on the parts of reality
that are important, and simplify or leave out other parts.

The surgical procedures presented in this thesis deal with a heart that has
been stopped. The main functionality of the heart is non-functional because
the heart-lung machine has taken over the circulation of blood. The goal
of the surgical procedure is naturally a functional one; i.e. the heart is to
support the body with oxygenated blood in a more efficient manner. The

20 CHAPTER 2. THE HEART

reconstruction in itself though, is very much concerned with morphological
features of the heart. During planning, the surgeon will discuss questions
such as “how does the interior of the heart look as seen from a specific
incision?” and “can I reach certain features?”. The most important part of
the simulation should therefore be the soft tissue deformation in response to
interactions and cutting. In perspective of the three levels this thesis deals
with a level two simulation.

2.5 Categories of Usage

A surgical simulator is a tool developed and used for a specific category of
use. In this thesis I distinguish between pre-operative planning and gen-
eralized training for pediatric cardiac surgery. Basically, the distinction is
whether or not the simulator is based on patient-specific models (mostly
for experienced surgeons) or whether it is based on generalized pedagogical
models (mostly for novice surgeons). Within both categories of use, the
user should be allowed to train, rehearse, experiment, and explore to aid
both the users understanding of the morphology and related surgical pro-
cedures. In our preliminary evaluation of the surgical simulator in chapter
12 these two categories are revisited with specific heart models for each sce-
nario. Although the discussion in this section is valid for a range of surgical
procedures, I will focus on congenital heart defects.

2.5.1 Pre-Operative Planning

The initial need, as described by the pediatric surgeons of Aarhus University
Hospital, was a tool for them to do pre-operative planning. In this case the
simulator would be based on the image data of a patient-specific heart, and
the surgeon would rehearse the procedure or explore the morphology of the
heart.

Pre-operational planning of a surgical procedure is normally done based
on ultrasound and catheterization guided by x-ray. In cases of complex de-
fects it can be necessary for surgeons to acquire 2D image data through MRI.
The strategy to be used for a specific surgical procedure is tightly coupled to
the morphology of the heart, and the surgeon must therefore translate the
2D images to a mental model of a three-dimensional heart. The surgeons at
Skejby are quite far ahead in this area, because they already use an explicit
representation of the 3D morphology through a volume rendering of 3D
MRI [173] or through a three-dimensional geometric model [174] acquired
by segmentation of the MRI. This tool alone gives the surgeon a better un-
derstanding of the morphology. What is still missing, is the relation of the
heart shape to the surgical strategy in which the heart is actually manipu-
lated. When the surgeons are planning for a surgical procedure today, the
surgeons must mentally go through the procedure. A surgical simulator is

2.5. CATEGORIES OF USAGE 21

a tool to more explicitly go through the procedure and explore the heart.
When the surgeons analyze information from 2D or even 3D images of the
heart, one important aspect is missing; the deformation and interaction he
normally experiences when analyzing the situation in an actual surgical pro-
cedure. The surgeon is not used to looking at pure geometrical models - the
surgeon looks at models that deform in real-time while he investigates them
and changes topology based on incisions. He is simply more experienced at
making decisions based on what he sees in actual surgery, which is an open
heart manipulated with surgical instruments. E.g. when a surgeon looks
at an atrial septum defect (ASD) in actual surgery, he decides what to do
based on the location of the hole in the atrium septum and the incision he
has made into the myocardium. The surgeon might also deform the heart
to get a clear view of the septum. A surgical simulator should ultimately
be able to present the surgeon with the same image of the open heart as
real surgical procedures, and based on this he could make the same decision
pre-operatively as in the actual surgical situation and thereby be better pre-
pared. A static geometry of a closed heart does not in that sense resemble
what the surgeon experiences.

The simulator can also be used to ensure that a given procedure can be
executed as planned by giving the surgeon information about e.g. the level
of stress that the tissue is exposed to or whether a given piece of tissue can
cover a hole or be reconstructed and fitted into a given shape. These last
issues are out of scope of this thesis though.

2.5.2 Education and Training

Our second scenario is for education and training in a more general setting
of both novices and experts, although novice surgeons are of most interest
initially. In recent years surgical simulation has begun to gain clinical respect
and is predicted to be an integrated part of the training to become a surgeon
[126].

In the pre-operative case the simulation is per definition based on real
patient data and as such is limited by the information that we are able to
retrieve from the range of medical images and the time available to build
virtual models. In a general educational scenario we are not limited in the
same sense and can more aggressively acquire accurate models, do more
time-consuming post-processing and do manual changes to enhance and
simplify as necessary in relation to the educational case. I deal with the
construction of virtual models in relation to our simulator in chapter 11. In
some cases the educational scenario might not look anything like the real
surgical procedure but still teach the basic elements of the surgical proce-
dure. As an example, the Mist system [83, 179] can use pure geometrical
figures to teach hand eye coordination. The training scenarios must be tar-
geted to the aspects of the surgical procedures that are to be trained. It is

22 CHAPTER 2. THE HEART

not necessarily the ultimate goal to just simulate reality. E.g. in [167, 166]
a risk reducing training is set up. Risk estimates are used to avoid damage
of important tissue. In the training scenario the student can “feel” the risk
areas through haptic feedback. According to [166] brain and cardiac surgery
are areas with well-defined areas of risk.

In section 2.2 current teaching of surgical procedures was presented. A
simulator could support this learning process with training in virtual reality.
A simulator could be used as a supplementary tool in medical curriculum and
as a tool to transfer knowledge from master to student. The teachers might
use the simulator to present a procedure or technique, and the students
could later try out the procedure for themselves. Used as such, a surgical
simulator has the potential to be a benefit within the following areas:

An alternative to cadavers and animals

A surgical simulator can be used as an alternative to surgical training on
cadavers or animals. In [104] a surgical simulation is presented as an alter-
native to animals and cadavers in a course in advanced trauma life support.
The problem using animals is that they do not have the same anatomy
as humans. Cadavers have the correct anatomy although tissue properties
change when the tissue is dead, the cadavers are expensive, and can be dif-
ficult to acquire. Neither cadavers nor animals are reusable and represent a
single case of disease (if any). Using cadavers and animals is also a source
of serious ethical issues.

A tool for sharing of knowledge

New or rare surgical procedures can be recorded by experienced surgeons,
thereby sharing their knowledge with other experienced surgeons or stu-
dents. Whole libraries of knowledge could be constructed. The user can
watch the procedure from any angle and can take over control of the simu-
lator at any time. In this case, a patient-specific heart with rare conditions
would be used.

Minimizing risks to patients

By allowing the young surgeon to train on a surgical simulator and generalize
the acquired knowledge to the real surgical procedure, he can reach a higher
level of proficiency before coming into contact with real surgeons. Prior to a
surgical procedure he can furthermore rehearse the procedure on a patient-
specific heart.

2.5. CATEGORIES OF USAGE 23

Represent arbitrary defects or anatomies

As mentioned earlier there are more than 3000 different diagnosises in con-
genital cardiovascular defects, this can make it very difficult to reach a level
of proficiency within any area, apart from the most common diagnosises.
The fact that defects often have an aspect that makes them almost unique,
means that it can be very difficult to reach a certain level of proficiency with
a specific type of defect. Since the simulator is based on virtual models,
unique defects captured in a medical scan can be circulated and trained on
an infinite number of times. The virtual models can furthermore be altered
through post-processing, thereby generating any desired defect. A simula-
tor would consequently enable surgeons to train on any defect imaginable,
thereby reaching the required level of routine.

Be allowed to make mistakes during training

When the student engages in a master-apprentice relationship working on
real patients he must always listen to the instructions of the master-surgeon.
Any failure, or sum of small mistakes, can in the end be fatal to the patient.
The student must always trust the experience of the master-surgeon. In
a simulator, the student would be allowed to learn from his own mistakes,
thereby getting a better feel for the thin line between “possible” and “impos-
sible” in a given surgical setting. The simulator could allow the student to
try out something, rewind and try again - something which is unfortunately
not a feature of the real world.

The user is not pressed for time

In real surgery the surgeon must work under a strict time schedule. The
heart in a heart-lung machine does not receive oxygen and other nutrient
through the blood while it is operated on - although it does receive nutri-
ents through the liquid injected into the coronary arteries. This fact is a
great constraint on the time allowed in a surgical procedure. In general, a
prolonged time in anesthesia and open surgery results in a increased risk
of complications, both during surgery and recovery. Working on cadavers
or animals the student is also pressed for time by the other students. The
simulator allows the student to train as long as he needs, and potentially at
his own personal computer at home.

Skill assessment

Especially in the US skill assessment using surgical simulators has been
proposed as a way of grading people or selecting people for surgical career
[170, 96]. The continued “grading” of people could be used to make sure
that surgeons stay at a certain proficiency level.

24 CHAPTER 2. THE HEART

Part II

Surgical Simulation

25

Chapter 3

An Overview of the Research
Field

This chapter presents the different themes of interest when we consider the
technical aspects of a surgical simulation. At TATRICS 3rd annual pre-
sentation Dr. Kevin Montgomery derived some of the common themes in
surgery simulation research based on 24 different groups working within the
field [132]. The survey by Liu et al. [120] fits well together with Mont-
gomery’s perspective and also gives a good overall presentation of these
themes. The themes selected for presentation in this thesis are: Datasets
and segmentation, representation, simulation engine, visualization and dis-
play, and interaction and haptics. The following sections will serve as an
overview of the technical themes involved in the remaining thesis and will
narrow down the focus of the thesis compared to the previous chapter.

3.1 Datasets and Segmentation

The type of simulators dealt with in this thesis is related to the shape and
physical characteristics of organs and tissue. To build realistic virtual models
we need to base them on real human anatomy. Standard medical image ac-
quisition techniques [163] include Magnetic Resonance Imaging (MRI) based
on magnetism and Computed Tomography (CT) based on x-rays. Since CT
is based on x-rays, an image acquisition in this modality means that the
patient is subject to a radiation-dose. MRI on the other hand is risk-free.
CT often gives images with better quality and resolution - especially the
difference between bone and tissue is evident, although MRI is better at
distinguishing between different types of soft-tissue.

Often the datasets are divided into two categories according to the sce-
nario of use; patient-specific or general datasets. Working with acquisition of
real patient datasets means working with real patients and therefore a num-
ber of constraints apply. First, the time we can use to acquire the datasets

27

28 CHAPTER 3. AN OVERVIEW OF THE RESEARCH FIELD

and the variety of modalities we can acquire are limited due to patient-
comfort and safety. Secondly, the total resources used for a large number of
patient-specific datasets, limits the amount of manual work we can put into
each dataset. Very long post-processing times can often not be accepted
either, since this could delay the treatment process of each individual pa-
tient. General datasets can be acquired from volunteers, in which case time
and resources are not a serious problem. The most aggressive acquisition
of general datasets can be performed when deceased donate their bodies to
medical research. In that case both long post-processing times, high-dose
radiation, and destructive acquisition can be allowed. The prime example of
this is the Visible Human Project [14] where a donated male body has been
acquired with CT, MR and cryosection (slicing of the body in millimeter
thick slices and photographing each slice). A number of projects following
the Visible Human Project have arisen; the Chinese Visible Human [199],
the Korean Visible Human [150] and the Visible Ear [172] to name a few.

Segmentation [163, section 5.3] is the process of dividing the image data
into regions according to some measure. In the case of medical image seg-
mentation we seek to identify the different parts of anatomy. The result
of segmentation is a volume of voxels from which we can find a surface of
triangles through e.g. the marching cubes algorithm [121].

In the case of children with congenital heart defects, CT is most often
not used since the radiation-dose involved would incur a significant risk of
radiation-related disease later in life. The beating of the heart is an issue
since this introduces severe motion artifacts. Therefore MR acquisition must
be triggered to a specific window of the heart-cycle. A smaller window
results in less motion artifacts, but a larger amount of noise necessitating
a prolonged scan-time. The scan-time is important since the children are
anesthetized to lie still in the scanner - and this in itself should not be
prolonged any more than is strictly necessary. The breathing of the children
is another problem, since breathing shifts the entire chest up and down.
These artifacts can be corrected for by a so-called navigator based scanning.
Our data-acquisition and post-processing is presented in chapter 11.

3.2 Representation

The representation of tissue as a data-structure in the simulation is natu-
rally deeply connected to the simulation engine, which I will cover in the
next section. Essentially it is a conversion of the output from the segmen-
tation to an efficient data-structure. Both simulation and visualization use
a representation of the tissue shape as a basis for calculation. The involved
data-structures must consequently be judged flexible and efficient in that
perspective. Since the requirements for simulation and visualization may
differ, so does the optimal representation of each modality. This fact must

3.3. SIMULATION ENGINE 29

be related to the the tight connection between visualization and simulation.
More details on our representation is found in chapter 8 on simulation and
9 on visualization.

3.3 Simulation Engine

The category of simulation engines I consider deal with the modeling of bio-
mechanical properties of tissue, and the numerical methods used to calculate
the tissue deformation. Often a trade-off must be made between various
aspects of geometrical detail, computational speed, and finally realism and
precision within the perspective that computational power is limited. The
simulation engine must also take into account various constraints opposed
by interaction and visualization. If interaction includes cutting for example,
it is in many cases a considerable constraint on the choice of method for
calculating tissue deformation. This issue will be discussed more in chapter
5 in relation to specific models of deformation. The main focus of this thesis
is on real-time interaction with very complex morphology and a consistent
and fast deformation. Hence our priorities are - in no specific order:

• Geometry (model complex morphology)

• Speed (convergence and update rate)

• Robustness (consistency, stability and realism)

• Visual result (realism and graphics)

I expand on the above bullets in the following paragraph. It is essential to
this project that the geometry of the virtual heart can accurately model the
degree of detail needed by the surgeons. If we cannot represent that, nothing
else matters. In the case of the heart, it requires a relative large amount of
detail to represent the complex morphology. The speed of the algorithms is
essential to the real-time aspect. If the algorithm cannot deliver some result
within one-twentieth of a second, the user will experience too poor a frame-
rate to obtain the illusion of smooth animation. Robustness covers aspects
such as consistency of results, stability and realism of the deformations dis-
played. It is intentional that realism is only part of the robustness demand.
If we had unlimited computational power, absolute realism would be equal
to robustness - but because computational power is at a shortage and real-
ism can only be approximated, other terms are important too. A simulation
should be realistic enough for it to be useful for the selected scenario of use
as discussed in 2.5. We can relax the degree of realism to a believable de-
formation within a given context; including consistency and stability. It is
essential that the range of deformations is consistent so that we can have
clear notion of what kind of accuracy to expect from the simulator. To quote
Bro Nielsen:

30 CHAPTER 3. AN OVERVIEW OF THE RESEARCH FIELD

“It doesn’t really matter whether the deformation that the sur-
geons see in the virtual environment is accurate as long as it
seems realistic! Just as important is that the model is robust
and shows a consistent and predictable behavior over time” [29]

Lastly I deal with the issue of visualization. Since representation of complex
morphology is essential to our problem-domain, the visual representation of
this morphology becomes important too. An important point here is that
the visualization and simulation need not be of the same level of detail,
but must each be judged accordingly to the scenario of use. In our case, we
require the visualization to include details and landmarks that are important
to the exploration and spatial understanding of the heart, but not necessary
in the simulation of the heart. In a pre-operative scenario, the visualization
must be based on acquired patient-specific data, but in a more general case
the “suspension of disbelief” becomes important to the educational process.
In our case we have carefully constructed a realistic visualization including
an operating environment and instruments.

In the survey by Sarah Frisken from 1997 [81], a range of different models
for the computation of deformable models are presented. In general, very
different models exist, both pure geometrically and physically based. In Liu
et al. [120] the geometrically based models are called kinematic based mod-
els but still refer to the same category. In the survey by Meier et al. [128]
they refer to the same category now as heuristic models. While both Gibson
[81] and Liu [120] categorize the Spring-Mass model (which we will look at
in the next chapter) as a physically based model, Meier [128] categorizes
it as a heuristic model. The geometrical models are most clearly defined
by their lack of an explicit representation of mass, force, or other physical
properties. These deformations are often fast - but have no justification in
real physics. Examples include splines, patches and free form deformation.
This thesis deals with the other category, physically based models. A line
can not be drawn clearly, but we can order the methods as to how well
they approximate the real physical phenomenon, and to what degree they
are merely geometrical heuristics. The chain-mail algorithm [80] by Gibson
is an alternative model of deformation not directly based on physics. The
algorithm favors size of geometry and speed of computation, but the defor-
mations represent realistic tissue deformation to a lesser degree than physics
based models. Amongst other things the chain-mail algorithm was used for
the simulation of knee surgery in [79]. In chapter 5 I will introduce two of
the most used models of deformation and the mathematics used to solve the
involved equation; finite element models and Spring-Mass models. In part
III, and specifically chapter 8 our simulation engine on graphics hardware is
presented.

3.4. VISUALIZATION AND DISPLAY 31

3.4 Visualization and Display

The subject of visualization and display deals with the strategies used for
visualization and the technologies of display hardware. We narrow down the
field to deal with real-time visualization of the calculated tissue-deformation.
Visualization in this context is concerned with sub-themes such as visual-
izing the surface through a 3D graphics API, shading and special effects.
Surgical simulators have, as most other interactive 3D applications, used
the contemporary 3D API such as Direct3D of DirectX [129] and OpenGL
[195]. In most cases these APIs are used as intended, with animated vertex
positions streamed from the CPU to the graphics card. Most basic shading
effects such as phong based lighting give a basic impression of the shape of a
3D object. In cases where an additional “suspension of disbelief” is wanted,
additional shading effects can be employed, such as texture mapping, more
elaborate lighting models, and shadowing. In some cases additional special
effects have been used to create more realism. In [15] blood and water was
included as special effects. In [28] visual effects were used to cover an endo-
scope with attached tissue and generate spray of local anesthetizer. In [200]
a Navier-Stokes based simulation of blood is used to occlude the endoscope.
In [75] a soft tissue simulation is improved visually through bump-mapping
and shadows cast by the instruments.

Our surgical simulator utilizes the OpenGL 3D graphics API for visual-
ization (but also for the simulation). We will return to this subject in great
depth in part III, so in this section we will simply state that the visualization
features both texture-mapping, normal-mapping [66] and shadow maps [63].

3.5 Interaction and Haptics

The field of interaction covers the instrumentation of tissue; e.g. probing,
grasping, piercing and suturing. This covers both the physical devices, col-
lision detection, and response of soft tissue [56]. Two aspects have been
given special interest by the research community over the years; cutting and
haptic feedback.

3.5.1 Cutting

Cutting is an essential task in many aspects of surgery. Basically, cutting
into tissue allows the surgeon to enter the human body in open surgery. In
surgery on a heart with a congenital defect, cutting is an inherent part of the
surgical procedure since making incisions is often part of the basic strategy
to re-shape the heart.

Two aspects of cutting with respect to simulation are important; the
simulation engine must support real-time update of the simulation geometry,
and the updated geometry must accurately reflect the desired incisions.

32 CHAPTER 3. AN OVERVIEW OF THE RESEARCH FIELD

Figure 3.1: Phantom Omni haptic-interaction device from Sensable (image
from sensable.com)

Our simulation engine supports arbitrary topological changes in both
simulation and visualization and although the methods implemented for
modifying the topology are rather simple, more elaborate methods exists.
As stated in [146] the main issue in cutting is that e.g. tetrahedral and
triangle meshes are not closed under the cutting operation. A triangle that
is cut along a sweep does not simply result in another set of triangles. The
mesh of primitives must be adapted to make the cut appear where the user
made the cut. The simplest method is to remove the basic elements inter-
sected by the cut-sweep (e.g. used in [70, 57]). This is clearly not very
realistic, but can be repaired somewhat if nodes along removed elements are
moved to the cut-sweep. In the other end of the scale is a complete subdi-
vision of the basic elements, in [20] a general subdivision of a tetrahedral is
presented. Problems here are that more elements are created with a slower
performance of the calculation of tissue as a result. Furthermore issues of
degenerate elements become evident. These can consequently be repaired
through post-processing [74]. Finally Stappen and Nienhuys [146] have pro-
posed to split meshes along faces (in a mesh of tetrahedrons) or edges (in a
mesh of triangles) and snap nodes to the original cut-sweep.

In relation to our contribution of decoupling simulation and visualization
in chapter 9 these issues get another dimensionality as visualization and sim-
ulation can have different cutting schemes (as is the case in our simulator).
This decoupling would enable us to use the most optimal cutting scheme
for each representation, e.g. the Delaunay based on-line cutting-scheme by
Stappen and Nienhuys [145] for the triangle-base mesh of the surface, since
this method is not generalizable to higher order elements which the simula-
tion consists of.

3.5. INTERACTION AND HAPTICS 33

3.5.2 Haptics Rendering

In the introductory text on haptics-interaction by Salisbury et al. [168] it
is stated that haptic1-interaction is a very important component in VR ap-
plications, in line with the importance of visual and auditory components.
Whereas visual and auditory media are one-directional from the media to
user, the haptic device is bi-directional in nature. The haptic device both
receives interaction input and responds with forces. According to [168] this
is often referred to as the single most important feature of the haptic inter-
action modality.

A given haptic device can be characterized by its interface points to the
human body, the grounding force from which forces are applied to the in-
terface points and the degrees of freedom in force feedback and positional
sensing. The haptics device used in this thesis and many other surgical sim-
ulators, the Phantom Omni (See figure 3.1), has one interface point which
resembles a pencil, is grounded on the table (and can therefore reproduce
weight of objects), has 6DOF in positional sensing but lacks pitch, roll and
yaw in force feedback. The Phantom Omni consequently delivers 3DOF
force-feedback to the user. Another example, the CyberGrasp Exoskeleton
by Immersion, attaches to each finger an actuator with 1DOF of motion
and force. Each actuator is grounded on the back of the hand. The system
architecture of a haptics rendering module means that the simulation engine
must support effective collision detection between a virtual instrument rep-
resenting the interaction device in VR and the simulated tissue. Following
collision detection comes a force response, often calculated on the basis of
interpenetration between instrument and tissue. In many areas of surgery
the feedback from tissue is essential. This provides an additional challenge
as force feedback must be provided at least at 500 Hz to feel smooth. Com-
paring this to the 30hz needed for the human visual system to accept a
series of images as an animation shows how sensitive the sense of touch is.
To achieve such an update rate from a simulation running at a much lower
frequency, interpolation schemes have been developed, e.g. [125, 155].

The various Phantom haptic devices are often used in surgical simulation
[27, 190]. One problem with a physical attachment of the “instruments” is
that certain moves can be constrained by the physical arm itself. With this
issue in mind [98] has proposed and developed a visual tracking system with
haptic feedback through magnetism.

Haptics rendering is potentially very important in surgical simulation.
Ro et al. [162] discuss their finding that a group of experienced laparo-
scopists performed worse than a group of novices on a commercially avail-
able laparoscopic trainer. Their conclusion is that the experienced group
(who where not experts) rely on the haptic feedback to successfully exe-
cute the procedure, which was not available in that particular commercial

1From the Greek haptesthai, meaning “to touch”.

34 CHAPTER 3. AN OVERVIEW OF THE RESEARCH FIELD

laparoscopic trainer.
In the case of our simulation, the actual forces felt in real surgery on

the very small heart of a child are actually quite limited. The heart of
a small child simply cannot withstand very large amounts of forces. The
surgeons must be very careful in every movement. We have implemented
force-feedback nonetheless, and actually exaggerated the forces. Our reasons
for doing this, in the context of heart surgery, is that force-feedback can also
be used to constrain the amount of deformation users are allowed to affect
the heart with, thereby limiting the amount of instability introduced through
the use of excessive forces. We will deal specifically with enabling haptics
in the GPU based simulator in chapter 10.

Chapter 4

Surgical Simulators

Having a basic understanding of the components of simulator from the pre-
vious chapter, we will now look into the categories of surgical simulators
developed and the issues in each of those categories. In the survey by Liu
et al. [120] three categories of simulators are identified; needle-based pro-
cedures, minimally invasive, and open surgery. This categorization reflects
the evolution of surgical simulation as a field, although every category is
still very much open to research and technical innovation. In the next three
sections 4.1, 4.2 and 4.3 we present important surgical simulators within
each of the three categories. In section 4.4 we present open source and open
framework initiatives for surgical simulation. Finally, in section 4.5 we look
shortly at validation studies in relation to specific surgical simulators.

4.1 Needle-Based Procedures

Needle-based procedures deal with the task of controlling the insertion of
some needle-type instrument into the human body. Examples include vas-
cular access, catherization, biopsy and anesthesia. This kind of simulation
might at first glance seem simple; the degree of freedom in interaction seems
very limited and the demands for visualization are in many cases quite lim-
ited. One area of specific interest for these simulations is the haptic feedback,
which in many needle-based procedures is key to a correct execution. Once
the needle is inserted into the patient the interaction is often restricted to
1DOF in the direction of the guidance of the needle. In some cases special-
purpose haptic equipment has been built taking into account this limited
interaction, but in many cases general 6DOF equipment has also been used.

Some of the first prototypes of needle-based procedures focused on the
haptics and to a lesser degree visualization and general simulation of tissue.
In [26] a simulator for surgical needles was haptics only, without any ad-
ditional visualization. Later work such as the CathSim simulator [185] has
both very realistic graphics and custom haptic, see figure 4.1. In the Cath-

35

36 CHAPTER 4. SURGICAL SIMULATORS

Figure 4.1: CathSim system for needle insertion. Image from hpsimcen-
ter.com

Sim the users can feel a realistic “pop” from the puncture of a vein inside the
skin. The visualization supports different ages, skin color and health condi-
tion. This project was commercialized as the CathSim AccuTouch System
by Immersion Medical.

The work by Stephane Cotin et al. [52] presents a recent high-fidelity
simulator for interventional radiology, in which a guide-wire catheter is in-
serted into the artery network of a patient, monitored through live x-ray
images. The simulator includes real-time deformable models (FEM) and
handles the many concurrent collision points between guide-wire and vessel.
The visualization simulates x-rays through the deformed tissue resulting in
realistic x-ray images.

In [119] a general framework for haptic based needle simulation is in-
troduced based on a finite automata representation of states. In [118] this
framework is used specifically for a simulator for an emergency procedure
where intra-abdominal bleeding is suspected.

4.2 Minimally Invasive Surgery

Minimally invasive surgery with endoscopic1 equipment is a specific branch
of surgery in which a minimum amount of incisions into the patient is sought
after. Instruments are inserted through small incisions in the skin of the pa-
tient and the instruments can thereby access organs and internal tissue.
These surgical instruments are special-purpose in the sense that they are
built for minimally invasive surgery. The instruments are often long and
cylindrical with a small active part in the end that can either cut or grab.

1Of Greek origin meaning “looking inside” or “in-sight”

4.2. MINIMALLY INVASIVE SURGERY 37

Figure 4.2: The Karlsruhe endoscopic simulator. Image from www-
kismet.iai.fzk.de

By nature these instruments have 4DOF. The visual feedback is provided
by another instrument-shaped camera-scope. The camera-scope is inserted
into the patients and a video-feed can be monitored on a nearby screen.
The difficult issue in these kind of surgical procedures is that the instru-
ments have a natural pivot point around the insertion into the patient. The
surgeon must consequently move the instruments in the opposite direction
of the intended movement inside the patient. Furthermore, the instruments
have a very limited and strictly confined work-area. Mapping such proce-
dures to a computer simulation is relatively well defined. Interaction with
all real organs is mediated through the special instruments and no direct
interaction is possible, consequently the real instruments (or replica) can
simply be augmented with sensors and actuators. The visual feedback from
a simulation can simply be output to the existing screen in the operating
theater. A large number of minimally invasive surgery simulators have been
developed, in this section I present only the most well known.

The Karlsruhe endoscopic simulator [107, 113] (based on the commer-
cially available kismet2 environment) is a complete environment for mini-
mally invasive surgery. The interaction device is a custom built artificial
cavity with endoscopic instruments as well as a standard monitor. All in-
ternal organs are simulated through a Spring-Mass system or a FEM based
model with the additional feature that arteries have a pulse that can be
felt through the haptic enabled endoscopic instruments. Arteries can also
be ruptured, leading to arterial bleeding. The system has been used for
both abdominal procedures as well as gynecology. This system has been
commercialized through the Select IT as the “Vest System One”.

The LASSO project [180] developed a simulator for laparoscopic gyne-

2Kinematic Simulation, Monitoring and Off-Line Programming Environment for Teler-
obotics

38 CHAPTER 4. SURGICAL SIMULATORS

cology. The basic data was built on the Visible Human Female data [14].
The project implemented a number of algorithms for deformable modeling,
amongst others the Spring-Mass, FEM and chain-mail. The visualization,
including generation of textures, vessels, pathological variations and lighting,
has been given special emphasis resulting in very realistic appearance of the
surgical simulation. Their initial system used the Phantom force feedback
devices although the project goal is to use custom endoscopic instruments.

The PreOp Endoscopic Simulator by Bro-Nielsen [28] was used for a
range of endoscopic procedures such as bronchoscopy. The system was com-
mercialized by HT Medical Systems (later acquired by Immersion) and was
reported to be one of the first “complete” systems in the sense that a range
of supporting multimedia content for education was available.

The MIST-VR system by Mentice [83, 179] is used to teach general skills
of minimally invasive surgery. In a realistic environment the user can learn
how to suture and tie knots. The previous sequence of minimally invasive
surgery simulators represents a gradual increase in realism. The MIST-VR
system takes another approach through the “core-skills” set of exercises.
These exercises use the interaction with simple geometrical shapes to teach
basic techniques of inverted interaction and hand-eye coordination. This
system has been validated in a number of studies [171, 151] showing that
these “simple” exercises can generalize to operating room proficiency.

4.3 Open Surgery

According to the survey by Liu et al. [120]:

“Open surgery remains the holy grail of surgical simulation.
Considerable advances in haptics, real-time deformation, organ
and tissue modeling, and visual rendering must be made before
open surgery can be simulated realistically” Liu et al. 2003.

Generally, the degree of difficulty in the challenge of open surgery simulation
depends on the chosen surgical procedures to simulate. The move from min-
imally invasive surgery to open surgery does not in itself transfer to a more
advanced simulation as such. Open surgery has more potential freedom in
interaction and visualization though, often transferring to more encompass-
ing models of human anatomy and more general models of interaction. One
severe constraint in a general open surgery simulator is the goal of complete
visual and haptic immersion. There is no clear interface to model as in the
case of minimally invasive surgery. Ideally, the surgeon should be able to feel
the tissue between his fingers looking at the patient in a completely natural
way. This goal has not been reached by any project to date though.

Although our contributions are within open surgery we work under the
assumption that the surgeon can manipulate tissue to a sufficient degree

4.3. OPEN SURGERY 39

Figure 4.3: HT Abdominal Trauma Simulator. Image from [27]

Figure 4.4: Open Surgery Simulator. Image from [19]

through instruments. This fact has been confirmed by our surgeons as a
valid approach to their branch of open surgery. Direct manipulation of tissue
with fingers is a natural option in surgery, and also used in heart surgery on
children - but not as often as one should think, since the heart is actually
so small that the fingers and hands can only do rather crude manipulations.
The heart might be rotated slightly with the hand or the surgeon might feel
with a finger through an incision in the heart to determine tissue thickness
or accessibility inside the heart.

Often open surgery is advocated in papers presenting general techniques
such as incisions, suturing or handling tissue. This corresponds with the
idea that open surgery allows more freedom in interaction and consequently
demands more general methods to deal correctly with any interaction.

In 1998 Bro-Nielsen et al. [27] described the HT Abdominal Trauma
Simulator for open surgery, see figure 4.3. This simulator is a PC based
soft tissue simulation with instrumental interaction of tissue through Phan-
tom haptic feedback devices. Basically the system supports doing incisions

40 CHAPTER 4. SURGICAL SIMULATORS

Figure 4.5: ActiveHeart by Nakao simulating the initial incision into the
chest. Image from [140].

into the skin and using instruments to pull back the skin to get access to
the abdominal region. The simulation is supported by multimedia content
since Bro Nielsen et al. realized that not all aspects of open surgery can
be simulated. In 2001 Webster et al. [190] presented a PC based suturing
simulator for wounds. The system supports haptic feedback through Phan-
tom Omni devices. In 2002 Bielser et al. [19] presented what they called an
“Open Surgery Simulator”, see figure 4.4. The system could basically sim-
ulate interaction between skin and surgical hooks or surgical scalpels, but
without any abdominal content as in [27]. In [75] a system for hernia repair
is presented, supporting knives and clamps. The system uses a non-linear
Spring-Mass system to accurately create the basis for haptic interaction.
The system uses Phantom interaction devices.

In the PhD thesis by Nakao [140] he presents his ActiveHeart system
where one can practice the initial incision into the chest and palpation of
the aorta in conjunction with a pure visualization of the heart, see figure
4.5. Our work fits nicely into this previous research as we investigate the
actual surgical procedure after the opening of the chest.

4.4 Medical Simulation Frameworks

It should be evident by now that a huge amount of different simulators for
surgical procedures have been created. In many cases there is a considerable
amount of re-implementation by many different research teams. Especially
work on basic FEM and Spring-Mass based cutting and haptics feedback (on
the CPU). Accordingly a number of research projects have tried to establish
a common framework with medical simulation to build on.

The SPRING Surgical Simulator [133] by Dr. Kevin Montgomery is
a general open-source platform specifically targeting areas of limited access
surgery. The SPRING platform can load data in a custom format consisting
of mesh-geometry, graphical attributes and tissue-material attributes. The
simulation engine itself is based on a Spring-Mass model coupling nodes

4.5. EVALUATION STUDIES 41

to vertices and springs to edges. Interaction and sensor support has been
given special focus in this platform [135, 134] with a wide range of differ-
ent categories of virtual instruments coupled with a wide support of actual
interaction devices. The SPRING platform has been used in a number of
internal projects but is openly advocated as a prototyping platform for other
researchers.

The GiPSi [45] (General Physical Simulation Interface) is an open source
and open architecture framework meant to facilitate the open exchange of
models and algorithms within organ level surgical simulations. Furthermore
this common framework is meant to further the interoperability of medi-
cal simulators in general since they will be built on the same framework.
Of specific concern is the interface between different dynamic models in a
general way.

The SOFA project [53] (Simulation Open Framework Architecture) is an
open platform for medical simulation systems in much the same spirit as
the GiPSi project, enabling component sharing and optimizing development
time. One specific interesting aspect about SOFA is the multimodal repre-
sentation of behavior model (simulation), collision model, haptic model and
visual model respectively. These modalities of representation are connected
with mappings that allow e.g. the collision model to deform based on the
simulation but still be defined separately.

The OpenTissue Library [147] is an API for physics based animation in
general. A range of different algorithms have been implemented within the
categories of multi-body dynamics, particle systems, water simulation, level
set methods, deformable objects, and collision detection. In comparison
with the previous three projects this library does not present itself as a
complete framework for surgical simulation projects specifically, but as a
general physics based animation library that could probably be used in any
of the previous frameworks.

4.5 Evaluation Studies

It has been recognized [123] that the next big step in surgical simulation
for education scenarios is a formal verification of the usefulness of training
with surgical simulators. In [170] Richard Satava presented the progress in
the Metrics for Objective Assessment of Surgical Skills Workshop. The PhD
thesis by Holbrey [95] presents a good overview and many good references for
validation studies both within training and skill assessment. In the report
on the metrics for objective assessment of surgical skills by Satava [170] a
number of criteria for validity of surgical simulators are set up. Gallagher et
al. [72] and Seymour et al. [171] have proved one important type of validity,
construct validity, for the MIST system previously mentioned. That is,
that experts and novices can be distinguished by their score on the system.

42 CHAPTER 4. SURGICAL SIMULATORS

Pearson et al. [151] showed that the complex task of tying a knot inside a
human could be learned from the MIST system and transferred to the real
situation. [115] showed how a VR based training on their custom simulator
was comparable to conventional video based training. A basic discussion is
naturally the metrics used. E.g. [115] use execution time as the basic score,
while [69] used a metric of “error reduction”.

Apart from a validation of the whole simulator as such, the basic techni-
cal elements of the simulators can be validated individually. In [178] user’s
sensitivity of haptics is investigated to show to what degree users can dis-
tinguish and identify a given soft-tissue parameter. The deformable models
themselves have also been a target for much investigation. Two aspects are
of importance; Instruments for measuring real tissue response (e.g. [38])
and validation of real-time calculation of the simulated soft-tissue response.
As an example the Truth Cube [106] is a publicly available dataset of a
series of deformations of a material with inlaid markers. These markers are
tracked in 3D and thereby represent a volumetric displacement field that
can be compared to deformable models. [105] experimentally verified that
Spring-Mass and finite element models behaved alike for small deformations
within the domain of craniofacial surgery.

In chapter 12 we present a preliminary evaluation of our surgical simu-
lator as a training and pre-operative tool.

Chapter 5

Calculating Deformation

The contributions of this thesis are derived from open heart surgery in which
deformation of tissue is one of the most important single elements to sim-
ulation as explained in section 2.4. In this chapter we look at the existing
theory on the calculation of deformation as well as within which categories
of surgical simulators it has been used. The survey by Sarah F. Gibson [81]
and later Montanga [131] deal in general with the calculation of deforma-
tion. Meier et al. [128] have recently done a survey in many of the same
topics but with special emphasis in surgical simulation.

I will give a short introduction to two popular categories of methods,
finite element based methods in section 5.1 and Spring-Mass based methods
in section 5.2. A comparison of the two methods is presented in section 5.3
which leads up to a general discussion of major issues in surgical simulation
specifically with regards to a simulator for congenital heart defects in section
5.4.

5.1 Finite Element Method

Using continuous models of physics for computer animation was introduced
by Terzopoulos [182]. In surgical simulation the Finite Element Method
(FEM) is often applied to linear approximation of certain material prop-
erties, to quickly find tissue deformation based on a continuous model of
elasticity. In the context of this thesis we will use the abbreviation FEM or
the term Finite Element Method to refer to the specific analysis presented
below, although the method is general in nature. The use of finite element
analysis in surgical simulation was initiated by Bro Nielsen in [30] and has
later been used in numerous applications and numerous variations.

Continuous equations that govern the behavior of soft body dynamics
can be constructed but are not easily solved. Analytical solutions can be
found for simple cases, but for complex cases we must use numerical methods
to discretize and solve the problem. Finite element analysis is a method to

43

44 CHAPTER 5. CALCULATING DEFORMATION

solve these kinds of equations. In the rest of this thesis we look only at
the finite element model as a tool to calculate deformations in soft tissue,
although a range of other applications are possible.

Finite element analysis can be used to solve the involved equations by
decomposing the original three dimensional problem domain (the organ) into
a finite set of basic geometric elements, often tetrahedrons. Based on these
elements the involved differential equations can be solved approximately.

The main advantage of FEM (compared to the later Spring-Mass e.g.)
is that we calculate approximate solutions to the actual equations of defor-
mation in theory of elasticity. The main problem with FEM in the scope of
real-time simulation is to make it run fast enough. Several techniques exist
and will be presented in the subsequent chapters.

The subsequent sections on FEM are arranged as follows; in 5.1.1 the
Theory of Elasticity, which is the basis of the equations to be solved by
FEM, is presented. The energy function is presented in section 5.1.2 and
discretization into finite elements is presented in section 5.1.3. Numerical
techniques solving the resulting system of linear equations is presented in
5.1.4. For more-in depth presentation I refer to the authors master’s thesis
[1] and source material for finite element analysis [30, 81, 99]. Lastly in
section 5.1.6 a number of surgical simulators based on FEM are referred.

5.1.1 Theory of Elasticity

The theory of elasticity [161] is a part of continuum mechanics that deals
with the prediction and calculation of the effect of applying an external load
on some body with elastic physical characteristics. That is, materials that
returns to their original configuration when the external load is released.
When studying the relationship between forces and deformation, some of
the concepts we need to define are stress, strain, equilibrium, and displace-
ment [197]. Stress is the strength of the force from interaction such as
stretching, squeezing or twisting. Often stress is characterized as “force per
unit area”. Strain is the resulting deformation in the material. The stress-
strain relationship defines how tissue deforms under a given force. When
forces are applied to the tissue it instantly deforms to a configuration in
which the internal “energy” of the tissue is in equilibrium with the external
energy. The information about the tissue we would like to know for com-
puter animation is the displacement of the nodes in equilibrium given some
external force.

One of the simplest models of elasticity is the static reversible elastic
deformation with a linear stress-strain relationship - often just called the
linear elastic model [56]. This model is most often used in surgical simula-
tion. The behavior of real tissue can be represented faithfully by a linear
model if the displacement is relatively small. We will consider this subject
again in the discussion in section 5.3.

5.1. FINITE ELEMENT METHOD 45

The material properties considered in this thesis are restricted to homo-
geneous, isotropic, linear elastic materials. Other more complex materials
behavior has been described in the literature, such as plasticity (where strain
does not return to zero after a certain stress amount), and viscous material
(where the deformation depends on the history of the stress on the ma-
terial). Also more advanced models including non-linear stress-strain and
incompressible volumes can be formulated, but cannot be solved in real time
with support for topological changes and the amount of detail necessary for
surgical simulation. An overview of some of these material properties is
presented in [56].

Combined with linear elasticity, FEM elegantly leads to a system of
linear equations. The next two chapters will give a short overview of how
the set of linear equations are derived from an energy measure and how the
set of linear equations can be solved with standard methods.

5.1.2 Energy Function

First some notation; an organ Ω consists of nodes with the initial position
xi = [x, y, z]T where xi ∈ Ω. A node is also related to a displacement
ui(t) = [u, v,w]T . A node can be either free or fixed. The nodal position of
a free node i at time t is xi + ui(t), a fixed is always in the position xi

The potential energy [30, 81, 99] of a system is defined as

Π = Estrain − W

Where Estrain is the strain energy and W is the work done by external
forces. The potential energy Π reaches a minimum when the derivative Π̇ is
zero, this is the equilibrium that we seek. The work W is defined as:

W =

∫

Ω
fT u dx

The strain energy of the linear elastic body Ω is defined as:

Estrain =
1

2

∫

Ω
εT σdx

where ε is the stress vector and σ is the strain vector. The stress vector ε,
indicating stress displacement relationship, is defined as ε = Bu where

B =

δ
δx

0 0

0 δ
δy

0

0 0 δ
δz

δ
δy

δ
δx

0
δ
δz

0 δ
δx

0 δ
δz

δ
δy

46 CHAPTER 5. CALCULATING DEFORMATION

The strain vector σ is defined in relation to the stress vector ε through
Hooke’s law:

σ = Cε

That is, we have defined a linear stress/strain relationship. C is the material
matrix. Assuming a homogeneous and isotropic material, the matrix is
defined by the two Lamé material parameters λ and µ:

C =

λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

Often the material parameters are expressed in terms of Young’s modulus
E and the Poissons ratio σ connected to the Lamé parameters through:

λ =
σE

(1 + σ)(1 − 2σ)

µ =
E

2(1 + σ)

Intuitively Young’s modulus represent the stiffness of the material and Pois-
sons ratio the compressibility. The closer σ is to 0.5 the more incompressible
the material is. The energy function we use is then:

E(u) =
1

2

∫

Ω
uT BT CBu dx −

∫

Ω
fTu dx

5.1.3 Finite Element Solution

The Finite Element Method can be used to discretize and solve the above
described energy function [30, 81, 99]. To actually find the equilibrium
of energy on a computer, we will discretize the continuum into elements
joined at node points, see figure 5.1. We choose an element type and an
interpolation function of the nodes of the elements.

The Finite Elements most often used is the tetrahedral element with lin-
ear interpolation of the displacement fields of the four corner nodes. Through
meshing, the shape Ω has been discretized into a number interconnected
tetrahedrons. see figure 5.1 for an example in 2D, meshing into triangles.
Inside a tetrahedron we can estimate the displacement by a weighted aver-
age of the displacement of the four nodes in the tetrahedron expressed in

5.1. FINITE ELEMENT METHOD 47

e1 e2

e3

e4

e5e6e7

e8

e9

Figure 5.1: Discretization of the shape Ω into triangle elements e1 to e9.

the natural coordinate system of the tetrahedra. Through a series of calcu-
lations (see the authors master’s thesis [1]or [30]) we can approximate the
energy measure with:

Ẽ(u) =
1

2
uT Ku− f · u

Keis a so-called stiffness matrix and depends on tissue parameters as well as
element connectivity. A static FEM formulation seeks to find the minimal
energy configuration of all nodes, which amounts to solving:

Ku = f (5.1)

This is a system of 3n unknown displacements, where n is the number of
nodes. The matrix K is sparse since the entrances in the matrix K related
to a given node are only non-zero where the nodes indicated by the row and
column index have a connection to the original node. Standard systems for
solving linear systems of equations can be chosen to solve this system.

5.1.4 Solving the Linear System of Equations

A range of standard methods exist to solve the system of linear equations
Ku = f . First we review direct methods, meaning algorithms that seek
to solve the entire set of linear equations through one application of the
algorithm. Standard text-book solutions to a system of linear equation
includes direct methods such as Gaussian elimination or Cholesky Factor-
ization [109]. An alternative technique for solving the system is to explicitly
invert the matrix K as proposed by Bro Nielsen in [30].

Ku = f ⇔ u = K−1f

In Bro Nielsen’s setup the cost was O(n3) for inversion of K, giving a long
pre-computation but interactive update rates 1. K−1 is a dense matrix, but
a selective matrix vector multiplication with a sparse force vector can give

1Bro Nielsen reports interactive rates for up to 250 nodes in 1996, the typical heart
model we use has 30.000 nodes

48 CHAPTER 5. CALCULATING DEFORMATION

interactive rates. This method requires storage of the dense matrix K−1, can
introduce numerical errors in the inversion, and the pre-computation time
exceeds what is normally used in Gaussian elimination or Cholesky Factor-
ization. What saves this application is that the pre-processing is only done
once, and then the matrix-vector multiplication is done for each frame. Un-
fortunately this solving method is not compatible with changes in topology.
K−1 cannot easily be updated when K changes. Comparing the matrix-
vector multiplication to conventional methods such as Gaussian elimination,
Cholesky Factorization or Conjugate Gradient (which we shall see in the next
paragraph) Bro-Nielsen reports in [30] that the matrix-vector multiplication
is ten times faster than the conventional methods. This result is somewhat
questionable since Bro-Nielsen does not report on actual performance num-
bers or on the sparsity of the force vector used in the multiplication - but
the overall hierarchy of performance should be trustworthy. A method called
condensation exists to make K smaller, substituting boundary conditions in
K, thereby only solving for forces on the surface of the organ [30]. Again
conventional methods can be used to solve this system. A condensed system
would require even further pre-processing time when topology changes.

The iterative methods, in contrast to direct methods, compute a se-
quence of approximations,

{

x1,x2 . . .
}

to the solution x, converging to the
real solution of the system. Specifically large sparse systems, as is our case,
are often solved through iterative methods such as the Conjugate Gradient.
In [146] Conjugate Gradient is proposed as a well suited method for solving
the linear equations of FEM. Since Conjugate Gradient does not rely upon
pre-processing or even the explicit construction of the entire matrix K it is
well suited for real-time alterations of the original topology.

5.1.5 Alternative FEM Formulations

Two different alternative uses of a FEM based solution to simulation of
deformable material will be mentioned in this thesis. First, the simple for-
mulation in equation (5.1) for a static linear system can be changed to a
time-dynamic system [29] by adding mass and damping to the system (in
much the same style as the Spring-Mass model we shall investigate closer in
section 5.2). The equation for the time-dynamic linear FEM is:

M ü + Du̇ + Ku = f

Where D is a diagonal matrix with damping coefficients and M is a diag-
onal matrix with mass coefficients. Using a finite difference approximation
this system can be solved either as a large set of linear equations (as in the
static FEM) or with explicit methods comparable to the Spring-Mass model
in section 5.2. For a reference, non-linear stress-strain based deformation
has also been sought solved for surgical simulation, e.g.. [154], although this
is naturally a further stress on any real-time constraint in an actual system.

5.2. SPRING-MASS MODELS 49

5.1.6 Examples of Use

FEM has been used in craniofacial surgery [105] to simulate tissue response
due to movement of bone and bone-parts in the face. The liver has been
effectively simulated in [50]. In [142] the tissue of the arm is simulated as
a three layer mode with distinct physical characteristics. Brain surgery has
been simulated in [88] using FEM to represent nerves and blood vessel with
high precision.

5.2 Spring-Mass Models

An often used alternative to the Finite Element Model in surgical simulation
is the Spring-Mass Model. The major difference compared to the FEM
is that the Spring-Mass Model is a discrete model in its basic definition.
Both models are of course discrete when we actually compute the resulting
deformation, but the FEM is an approximation of a continuum where the
Spring-Mass model is discrete from the beginning.

As with the FEM we represent the organ Ω with a finite number of nodes.
The Spring-Mass model is actually a particular type of particle system. A
general particle system consists of a number of particles (or nodes) moving
in space under the influence of external forces such as gravity, repelling
forces, attractive forces, or collision response. Particle systems have often
been used to simulate natural phenomena such as smoke or fire. The Spring-
Mass model is essentially a particle system with a fixed topology connecting
neighboring particles with springs that introduce repelling and attractive
forces into the system to constrain the shape.

The first use of the Spring-Mass model for surgical simulation was by
Cove et al. in 1993 [54] for laparoscopic gall-bladder surgery. A year later
the Kismet group presented Spring-Mass based surface models [107].

The entire abdominal region has been simulated in [27], and specific
simulations have been made of the liver [55] and gall-bladder [54]. Hys-
teroscopy has been evaluated as a case study in [136] with very positive
subjective results.

5.2.1 Spring-Mass Formulation

The Spring-Mass model [81] introduces two concepts to model the elasticity
of an organ: Springs and Particles. An organ Ω is defined as a number of
particles xi ∈ R

3 where xi ∈ Ω. The particles represent mass and inertia but
have no volume. The spring forces are connections between two particles
that affect the particles with forces based on their distance.

In this chapter the general notion of node will be interchangeable with
the notion of a particle, indicating a physical particle. The notion of an edge
will be interchangeable with a spring, indicating transfer of energy.

50 CHAPTER 5. CALCULATING DEFORMATION

The position of a particle in space is governed by Newtons second law
of motion:

f = ma (5.2)

where f is force, m is the mass and a is acceleration, that is the second
derivative of position x.

A spring connects two particles and adds force to these particles based
on their distance. Often linear springs following Hook’s law are used. A
Hookean spring gives a linear relationship between forces exhibited on the
particles and the difference between the resting distance and the actual
distance of the particles.

To simulate such forces as air resistance and loss of energy in the system,
the concept of damping is introduced. Another use for the damping factor
is to help ensure convergence of the numerical solutions. We assume that
we have n particles that approximate the shape of the organ Ω and i, j ∈
{1, 2...n} . With damping the behavior of the Spring-Mass system is governed
by the following equation:

miẍi = −yiẋi +
∑

j

gij + fi (5.3)

This second order differential equation controls the position xi ∈ R
3 of

a particle i with mass mi. A velocity dependent damping is introduced to
the system via the yi constant; the faster the particle goes the more energy
the system loses due to damping. Often Spring-Mass systems are damped
beyond a realistic amount to increase stability of the system.

Two different categories of forces act on the particle, external and in-
ternal. External forces are forces that are external to the organ, e.g. user
interaction and gravity, fi represent the total external force on the particle
i. Internal forces originate from within the organ, in the Spring-Mass simu-
lation they are represented by the springs. gij represents the internal forces
as described by the spring between i and j. In an actual implementation
the spring is not present when gij = 0. For a linear spring gij is defined as:

gij = kij (lij − ||xi − xj ||)
xi − xj

||xi − xj ||
(5.4)

That is, gij is the vector between the rest and actual configuration of the
spring multiplied by the spring-stiffness multiplied by the spring stiffness kij

between nodes i and node j, lij is the original length of the spring between
i and j. Figure 5.2 shows gij without the kij factor in compressed and
stretched states. Intuitively, the spring adds attractive forces to the particles
if they are further away than nominal distance and repulsive forces if they
are closer than nominal distance.

The Spring-Mass model is said to be local because each particle can
only react in response to the behavior of the particles that it is connected to

5.2. SPRING-MASS MODELS 51

Compressed

Initial length

Stretched

Figure 5.2: Spring response

through springs. For the dynamic system this means that forces propagate
through the organ along the springs, and can only propagate one spring each
discrete time-step.

The basic spring-model can be extended in a number of ways, such as
additional forces to allow for a faster convergence to the original state with
“home forces” [54], with explicit volume preservation [181] or by non-linear
force-models [113].

5.2.2 Solving the Second Order Differential Equation

From equation 5.3 we will determine the position of the particles in the
Spring-Mass system to create an animation of the behavior of the system.
If we have a particle xi at time t we would like to know the position of xi

at time t + ∆ assuming we know what forces f act on the particle in that
period of time. To solve the second order differential equation governing the
position of the nodes in time, one often expresses the equation as two first
order differential equations solved with standard methods such as Euler
integration or Runga Kutta. Another method, Verlet integration on the
other hand is based directly on the second order differential equation. The
initial values of the position x are assumed to be given in the rest of this
section.

With the introduction of a velocity variable v = ẋ the equation 5.2

ẍ = f/m

is rewritten to:

v̇ = f/m

ẋ = v

The choice of integration method is a trade-off between computation time
and precision of the integration.

52 CHAPTER 5. CALCULATING DEFORMATION

Explicit Euler Integration

First let us write the Taylor series expansion of x(t + ∆):

x(t + ∆) = x(t) + ẋ(t)∆ +
1

2
x(2)(t)∆2 +

1

6
x(3)(t)∆3 + O(∆4)

The most basic integration formula is the explicit Euler formulation [109].
Euler integration of the ordinary differential equation ˙x(t) = f(t) is simply
a Taylor-series of order 1:

x(t + ∆) = x(t) + ∆ · f(t)

With respect to the second order differential equation 5.2 the solution is:

x(t + ∆) = x(t) + ∆ · v(t)

v(t + ∆) = v(t) + ∆ · (f/m)

Explicit Euler integration is very simple to compute, but is inherently un-
stable.

Runga Kutta Integration

Runga Kutta is mentioned here as a more precise and stable, but also slower,
alternative to Euler integration. Runga Kutta 4 is an often used [20] variant
of Runga Kutta which reproduces the terms of the Taylor series up to a term
involving ∆4. The error is of size O(∆5). Another variant, Runga Kutta 2,
has been used in e.g. [181]. One advantage of the Runga Kutta family of
integration is that they support a change of step-size to increase accuracy
of the integration on parts of the function. This feature is not immediately
useful in a real-time surgical simulator because we will need a stable flow of
frames at all times.

Verlet Integration

Verlet integration was originally introduced in the field of molecular dynam-
ics and is more rarely used in surgical simulation than the standard methods
of Runga Kutta and Euler integration. Verlet integration was used in [101]
for advanced character physics2 and [137] for surgical simulation. The Verlet
integration is based on two third-order Taylor expansions of the positions
x(t) , one backward and one forward:

2Thomas Jakobsen is very often cited in various fields for popularizing Verlet integration
- which in his case was used for a very popular computer game.

5.2. SPRING-MASS MODELS 53

x(t + ∆) = x(t) + ẋ(t)∆ +
1

2
x(2)(t)∆2 +

1

6
x(3)(t)∆3 + O(∆4)

x(t − ∆) = x(t) − ẋ(t)∆ +
1

2
x(2)(t)∆2 − 1

6
x(3)(t)∆3 + O(∆4)

Adding the equations and isolating for x(t + h) gives us:

x(t + ∆) = 2x(t) − x(t − ∆) + ẍ(t)∆2 + O(∆4) (5.5)

Since we seek to integrate Newton’s equations, ẍ is known directly as f

m

from equation 5.2. The Verlet method is reasonably fast to evaluate and is
very stable.

The damping of the Spring-Mass system was introduced as a linear func-
tion of the velocity. In the standard Verlet method the velocity is not ex-
pressed directly, and we will therefore use an ad-hoc method of weighting
the old and new positions to create a dampening effect:

x(t + ∆) = x(t − ∆)(1 − λ) + x(t)λ (5.6)

5.2.3 Stability

The integration methods used to solve the differential equations of the
Spring-Mass system have a trade-off between numerical accuracy and speed
of calculation. We need a real-time solution, and the numerical accuracy is
therefore of lesser importance. Most important is that the stability of the
solution.

In [137] Euler, Runga Kutta 4 and different Verlet3 methods were com-
pared with respect to their ability to deliver stable real-time results. It
was tested how large the time step of the individual methods could be set
while remaining stable. Taking into account the calculation time of the in-
tegration, the Verlet method is superior to Euler and Runga Kutta 4. The
Verlet method is therefore chosen as a standard in this thesis, although other
methods could be supported.

Because stability is most important, some measures can be taken to
increase it. One method is to dampen the system beyond a realistic level.
Some kind of iterative constraining of distances is another possibility. In
[158] the phenomenon of elongated springs was identified in simulation of
cloth. Elongated springs are identified as a system in which some springs are
stretched unrealistically in relation to others. We would like the springs to
be of approximately equal length. One solution is to use a technique known
as relaxation, which iteratively constraints all lengths [101, 158]. In section

3Basic Verlet is not checked, but is equivalent to velocity Verlet when the velocity is
not needed

54 CHAPTER 5. CALCULATING DEFORMATION

Shear Springs

Bending Springs

Structural Springs.

Figure 5.3: 2D
regular grid with additional springs

8.7.1 we use a specific constraint determined by the volume of the elements
in the simulation.

5.2.4 Spring Topology Issues

The springs represent constraints and flow of energy in the Spring-Mass
system, and the topology of these connections as well as the relative position
of particles determine the global behavior of the simulated organ. The logic
behind the connection of particles also determines the possible visualizations
and interaction.

An under-constrained system might have several resting positions and
the system might easily end up in configurations of nodal positions which
is allowed by the system, but is not realistic. Parts of an under-constrained
system can collapse because part of the volume might flip into itself. When
a grid structure is used as basis for spring connections the system is under-
constrained because the boxes or cubes are in themselves under-constrained.
In a 2D grid the missing forces have been identified as missing resistance to
shear. The solution is to connect springs across the diagonal [158], see figure
5.3. In a 3D grid composed of boxes additional springs connects corners of
the box to resist a collapse [181].

If the system is over-constrained it will exhibit less elasticity and more
rigid behavior than we indicated through the spring stiffness. Another prob-
lem with an over-constrained system is numerical stability (these kind of
stability problems are closely related to the problem of stability and spring-
stiffness, see section 5.2.3). Because of these difficulties, systems have often
been arranged in regular structures guaranteeing a homogeneous behavior
all over the organ. Often regular lattices or prisms with triangular base have
been proposed.

5.2. SPRING-MASS MODELS 55

cm

a

b

V

b
c

a

Figure 5.4: Spring to maintain curvature

The strategy behind the connection of nodes through springs is impor-
tant for the visualization and interaction with the organ. The strategies for
connecting the springs are often divided into two categories; surface and vol-
ume representations. The surface representation simply defines only a sur-
face with no explicit volumetric elements, the surface model may nonetheless
be used to approximate volumetric behavior. The volume representation has
elements to ensure a behavior that takes the volume of the model into ac-
count. Often the particles of a volumetric representation are arranged in a
set of connected tetrahedrons, hexahedrons, or other volumetric geometries.

The choice of surface, volumetric, or other hybrids, can be regarded as
a hierarchy of approximations in which true volumetric models are more
precise than surface models. A surface model representing the surface of
some volume will be faster to compute than a full simulation of volume.
The trade-off again is efficiency of computation versus physical accuracy
[56].

Because the topology of springs is so important for the behavior of the
system and the speed of computation, the characteristics of the simulated
organ can be taken into consideration when planning the strategy for con-
nectivity. In [55] the behavior of a liver was simulated by two different
geometrical components; A 2D elastic surface to simulate the membrane of
the liver (with torsion springs to simulate curvature of the surface) and a
3D mesh to simulate the interior of the liver (as a quasi-viscous material).

Surface Models

While the surgical simulator presented in the third part of this thesis is based
on a volumetric representation of soft tissue, it is valuable to investigate the
initial experiments in the field of surgical simulation, using simpler repre-
sentation of morphology. A simple surface model is typically represented
by a two-dimensional grid with springs to resist shear and bending [158],
see figure 5.3. Delingette et al. [56] used a surface model to approximate
a thin vessel while Cover et al. [54] used the surface model to approximate
the volumetric behavior of a gall-bladder. When a basic surface model is
used to approximate the behavior of a volumetric organ, there are of course
no explicit forces that react to changes in volume. This can easily lead to

56 CHAPTER 5. CALCULATING DEFORMATION

unrealistic results where the model self-intersects. To get some volumetric
behavior additional springs are sometimes introduced into the surface based
models. The basic approach is to introduce springs to guarantee some cur-
vature of the organ. If the surface consists of a simple 2d grid, bending
springs can be introduced to resist bending of the surface, see figure 5.3.
In [143] the animation of a muscle along an action line is simulated. The
muscle geometry is organized in a grid along the surface of the muscle. [143]
therefore introduces angular springs (see figure 5.4 (a)) to preserve the vol-
ume and the overall shape of the muscle. In [55] torsion springs (see figure
5.4 (b)) are added to maintain the curvature of the surface. All these dif-
ferent springs reduce to a computation over two of three springs arranged
to maintain the curvature of the surface.

Volumetric Models

A volumetric model of some tissue often represents the entire organ with
smaller atomic parts of tetrahedra or hexahedral elements. The tetrahedral
mesh gives a great flexibility for an efficient representation of any morphol-
ogy [20], but constructing tetrahedral meshes is an active research topic in
itself [148]. In the Spring-Mass model, edges of elements are often trans-
lated directly to springs. In that case the tetrahedral elements are struc-
turally stable, but hexahedral elements are under-constrained and additional
springs are often inserted across the elements [181]. The simple volumetric
model can be extended to encompass more elaborate biological features. In
[105, 181] a three layer model of the skin tissue is used because the three
layers have different physical characteristics.

Connected Surfaces

In the cross between surface and volume models I will present a specific
pseudo-volumetric model, the so-called connected surfaces. This very simple
idea was presented in the authors masters thesis [1] and was later general-
ized in [62]. The motivation for showing the result here is to emphasize
that the difference between surface and volume is not clear-cut in the case
of Spring-Mass systems. The model was developed with the heart model in
mind and requires no special meshing - it behaves as if it was a true vol-
ume representation. It is an alternative to the true volumetric tetrahedron
or hexahedral mesh of the heart. From the segmentation we can retrieve
surfaces representing the outer and inner surfaces of the heart muscle. Data
from the segmentation is given as a surface consisting of triangles. The idea
of Connected Surfaces is to use both the inner and outer surfaces, and set
up a relationship between them so that a volumetric behavior is exhibited
- the relationship is defined as additional forces. These additional forces,
called connecting forces, would propagate force between the two layers to

5.3. COMPARING FEM AND SPRING-MASS 57

resist bending and constraining the distance between the inner and outer
surface. The forces are represented as additional springs connected from
each particle to particles in the surface on the opposite side.

Best Topological Scheme

If computational power was not a problem, we might ask ourselves what the
best topology scheme would be. There is no simple answer to this question.
Surely, volumetric behavior is more realistic than surface behavior because
a simple surface model cannot preserve volume to the same degree as a
volume model. But the Spring-Mass system might not exhibit a more real-
istic behavior even when the resolution and connectivity of springs resemble
some model of reality more closely. If the resolution or detail of the model
is increased the behavior cannot be guaranteed to be the same as in the low
resolution model. This basically has to do with the fact that a Spring-Mass
system is defined locally; there is no global differential equation that we
solve for a minimal energy configuration, this is implicit in the Spring-Mass
system.

When the resolution is increased the propagation of forces is slower be-
cause forces only propagate along one spring each time step. In a higher
resolution model the mass also has to be divided in some way, but because
of differences in the connectivity this might not be simple.

The point is that we must validate the models we build, either by com-
paring them to previous models, formally validating them against real data,
or getting expert opinions [71].

5.3 Comparing FEM and Spring-Mass

In this section we compare some of the properties of Spring-Mass and FEM
as well as the methods used to solve the involved equations.

In [51] Spring-Mass and a tensor-mass model is compared. The tensor-
mass is derived from time dynamic FEM formulation but is solved through
explicit integration. Since the tensor-mass is based on the finite element
approximation in computation of stiffness, it is independent of any geo-
metric properties. The Spring-Mass system model, on the other hand, is
defined from the beginning as a discrete model. The behavior of the Spring-
Mass system depends on the connectivity of springs and nodes. In [51]
they furthermore argue that since the tensor-mass is derived from contin-
uum mechanics, material parameters can be directly applied from measured
parameters. For the Spring-Mass model there is a basic problem of finding
parameters, since the topology determines part of the behavior. In the au-
thors early work, one such methods was introduced [3] searching for optimal
parameters for a Spring-Mass model in comparison to a FEM model with

58 CHAPTER 5. CALCULATING DEFORMATION

the additional argument that the parameters should be optimal when the
two models behave alike over time.

In [154] and the comparison in [51] a serious problem with the linear
FEM based models is presented, namely that FEM is only valid for small
deformations. One issue is naturally that the linear approximations used
in FEM have their natural limits; FEM is often cited to be valid only for
deformations in the range of 10% [57]. More severe though is the fact that
FEM is not invariant to rigid transformations. As an example, when a
rigid rotation is applied to the set of nodes, the elastic energy increases -
essentially blowing up the shape [154]. The same problem occurs if only
part of a model is subject to a relatively large rotation. Spring-Mass models
do not have this basic problem, and are invariant to rotation. In [105]
craniofacial surgery was simulated with Spring-Mass and FEM and there was
some indication that they behave identically for these small deformations.

We now compare properties of the solutions methods; explicit integra-
tion (from section 5.2.2), iterative methods, and direct methods of solving
the set of linear equations (from section 5.1.4). A specific property of the
explicit integration is that it takes a number of iterations proportional to the
number of edges (or springs) for forces to travel along the segment described
by these edges or springs. That is, forces travel rather slowly through the
volume, and the nature of movement of forces through the mesh affect the
deformation. A direct solution or iterative solution to the globally defined
system of linear equations will (given that the requirements of the method
are fulfilled) solve the globally defined measure of energy. The local informa-
tion available in an explicit numerical integration of FEM or Spring-Mass is
furthermore an issue since a local equilibrium of energy does not necessarily
correspond to a global minimum. Specifically in the case of Spring-Mass
models with no explicit notion of volume this can be problematic since the
basic elements constituting the total organ-volume can invert and be kept in
that position by the external connections going out from this basic element,
i.e. the element is in a local minimum of energy. The FEM model has a
basic notion of volume and therefore introduces forces to “flip” the element
back in the case of explicit integration of the time dynamic formulation.
There is no guarantee though that these volume-governing forces are large
enough to escape the local minimum of energy. Another important aspect is
naturally the computation time, already dealt with specifically for FEM in
section 5.1.4. As mentioned, a direct solution takes a considerable amount
of time to solve. An iterative solver or an explicit integration scheme has
the possibility of receiving updated interaction, visualize, or otherwise do
computation at each intermediate step - of which each naturally demands
less computation than a complete direct solution. Following the discussion
of support for topological changes started in section 5.1.4, it should be clear
that the Spring-Mass model solved with the explicit integration scheme is
very well suited to topological changes since no pre-computation is neces-

5.4. REAL-TIME AND COMPLEX MORPHOLOGY 59

sary, in contrast to methods of inverting the stiffness matrix or using direct
methods.

Many papers present FEM as the accurate realistic method while Spring-
Mass is the fast but approximate method - although there is some evidence
suggesting this, we must ask ourselves how this theoretical comparison trans-
fers to real data of human tissue. Specifically in the case of cardiac mal-
formations, the tissue-parameters can vary quite much, and are not known
prior to surgery. In that case Spring-Mass might be just as “precise” as
FEM. More investigation is necessary in this area, to quantify precisely how
different tissue-models relate to what tasks can be trusted in simulation,
compared to the real procedure.

5.4 Real-Time and Complex Morphology

Based on the previous discussion it should be evident that speed of compu-
tation and the inherent constraint in numerical methods used are important
aspects of surgical simulation. A general tendency in the research contribu-
tions (as presented in previous sections of this chapter) has been to develop
faster algorithms for the computation of tissue-deformation. Primarily these
attempts have not been about creating entirely new methods to calculate the
deformation, but about accelerating existing models in computer animation
and mechanical engineering through various assumptions and constraints.
The tendency of simulators to increase in complexity and generality, with
the end-goal of open surgery, as presented in chapter 4, is in direct contra-
diction to some of the technical contributions that constrain the amount of
flexibility of the available methods. E.g. some of the pre-processing tech-
niques of FEM (section 5.1.4) do not support cutting. This constraint can
be eliminated somewhat if we can define a region-of-interest [51, 88] on the
organ, within which a flexible tissue-model can be used. Other methods
such as [31] assume a point based interaction to speed up convergence of a
Spring-Mass model.

In section 2.4 we argued that a simulation is very much a specific rep-
resentation of reality within very tight boundaries. Developing methods of
surgical simulation should always be done with a clear idea of what type
of surgical procedure to simulate, and in cooperation with surgeons. We
now turn to the specific issue of simulating a heart with congenital defects.
From section 2.3 explaining heart defects, it should be evident that we re-
quire a large degree of detail to accurately model congenital heart defects
than previous surgical simulators (see chapter 4)

The author’s early research on a CPU-based Spring-Mass model for faster
point based interaction was presented as the LR Spring-Mass model [2],
which is a concrete example of an alternative Spring-Mass model meant to
react faster to point-based interaction. The LR Spring-Mass model is based

60 CHAPTER 5. CALCULATING DEFORMATION

on local interaction and iterative relaxation. Local interaction is based on
an assumption that there is a distinguishable region-of-interest in which the
surgeon is manipulating tissue. In this region an iterative relaxation of con-
straints in the Spring-Mass system is executed from the point of interaction
and out. Such as system is clearly less flexible than a general implementa-
tion of the Spring-Mass system. The research strategy in this PhD project
has been to use the existing method of Spring-Mass as it is without con-
straining or assuming anything, i.e. this is generally applicable to any organ
or interaction modality. We allow the surgeons to do anything anywhere
on the heart. The method to achieve this acceleration of computation of
tissue-deformation for more accurate simulation of complex morphology, is
by using more efficient computational architectures readily available to us.
As we shall see the modern graphics processing unit turns out to be such a
platform.

Part III

The GPU Accelerated
Surgical Simulation

61

Chapter 6

General Purpose
Computation on the GPU

“And now for something completely different” (John Cleese,
1971)

To understand and motivate the use of graphics hardware to accelerate the
computations involved in our simulator, I present programmable graphics
hardware and the general use of such in this chapter. In the next chapter
we will again take up the subject of surgical simulation in combination with
the programmable graphics hardware.

The graphics processing unit (GPU) [193] today is a specialized chip
found in modern personal computers and game-consoles. The role of the
GPU is to accelerate drawing of 2D and 3D graphics by implementing the
required functionality in dedicated hardware. The modern GPU is a fur-
ther development of the blitter-chips of the 70’s and 80’s supporting fast
drawing of 2D sprites. The Commodore Amiga was the first consumer-level
computer with dedicated graphics chip with blitter support. In 1996 a com-
pany named 3Dfx released the Voodoo Graphics chip, which was one of the
first and most famous 3D graphics acceleration cards. In 1999 the Nvidia
GeForce 256 [192] was the first graphics card released with integrated hard-
ware support for transformation and lighting. Nvidia coined the term GPU
(Graphics Processing Unit) to describe the feature-set of the GeForce 256.
In 2001 the next generation, GeForce 3, was released by Nvidia. This GPU
was the first consumer-level card to include programmable vertex and pixel
shader. General purpose computation on the GPU [89] or GPGPU in short
refers to the discipline of using the programmable GPU for general problems
not necessarily dealing with 3D graphics or not directly suited for the nor-
mal rendering pipeline. This chapter will deal with the programmability of
graphics hardware and how in general we can use the computational power
for something else than graphics.

63

64CHAPTER 6. GENERAL PURPOSE COMPUTATION ON THE GPU

Bus Interface / Front-endProcess commands

Vertex-processorTransform vertices

to screen space

ClippingDelete unseen pixels

Triangle setup & rasterizeGenerate pixels

Occlusion cullingDelete unseen pixels

Parameter interpolationInterpolated values to all

rasterized pixels

Fragment-processorCompute transparency,

color and depth-value

Raster operations unitFinal hidden surface-

test, blend framebuffer

Textures

Textures GPU

memory

Framebuffers

CPU

Figure 6.1: A simplified drawing of the graphics pipeline. The red boxes
represent programmable parts of the pipeline; The CPU application, GPU
vertex processor and GPU fragment processor.

6.1 Graphics Pipeline

Within the context of this thesis, the graphics pipeline [65, 153] refers to
the pipeline of elements responsible for a rasterization-based rendering of
3D geometry. Of special interest are the parts of the pipeline implemented
in hardware on the current generation GPU’s. The graphics pipeline is
basically responsible for the generation of a pixelated 2D image based on a
3D scene, including geometry, texture, shaders, light etc. To use the GPU
efficiently it is very important to be aware of the graphics pipeline, possible
performance bottlenecks and optimizations (see [65, chapter 28]).

In figure 6.1 a simple illustration of the graphics pipeline can be seen.
The following is a short description of the normal use of the graphics pipeline.
This description also covers what is known as the fixed function pipeline.

6.2. VERTEX AND FRAGMENT PROGRAMS 65

That is, the default behavior of the graphics pipeline if the programmability
is not used or not available. The CPU has transferred textures and shader-
programs to the GPU in a step not shown on the illustration. At the begin-
ning of the shown pipeline, the CPU based application has sent geometry in
the form of vertices, arranged in triangular faces, to the GPU. Vertex pro-
cessing converts the vertices from coordinates in a three-dimensional world
space to screen-space through transformation with the Model-View and Pro-
jection matrices. Through the triangle setup and rasterization it is deter-
mined which fragments should be generated for later fragment-processing,
i.e. one for each pixel on the screen covered by a triangle in screen-space, pos-
sibly overlapping previously computed fragments. Next is occlusion culling,
where fragments can be excluded from fragment processing based on e.g.
the stencil buffer and depth buffer. Vertex attributes are now interpolated
across the surface of the triangle to create per fragment input-values. Fi-
nally the fragment shading determines the final pixel color based on texture-
lookups, some mathematical calculations, and the interpolated per vertex
attributes. In the fixed function pipeline the actual calculations depend on
certain OpenGL states. In the last step of the pipeline the color values can
be blended with the current framebuffer.

In the next section we will look into the fact that two parts of this pipeline
have recently become programmable, namely the fragment processing and
the vertex processing.

6.2 Vertex and Fragment Programs

The graphics pipeline as described in the previous section has traditionally
been a fixed function pipeline, in the sense that each step of the pipeline
executes a specific functionality to which parameters can be given. Specific
OpenGL extensions1 have been created to allow for other functionality than
the default fixed function pipeline. As examples of alternative fragment
processing released as extensions are texture environments for more flexible
combination of textures and incoming fragments, per-fragment lighting, and
dot product based normal mapping. According to the OpenGL extensions
for fragment [117] and vertex processing [33] this inflexibility of fragment
and vertex processing was in contrast to the actual underlying floating point
engines on the graphics cards. Any requests by the community of 3D graph-
ics developers for specific features of fragment or vertex processing had to
go through laborious routines to be exposed in the drivers as extensions. By
exposing this programmability to the public, the developers of 3D graphics
applications are now able to customize vertex and fragment processing to a
degree not previously possible.

1Vendor specific extensions or ARB extensions to a core OpenGL functionality

66CHAPTER 6. GENERAL PURPOSE COMPUTATION ON THE GPU

In OpenGL the functionality of vertex and fragment programs (or shaders)2,
has been exposed through OpenGL extensions corresponding to the func-
tionality of each new generation of GPU hardware. Of specific interest in
this thesis is the fragment programmability and some of the newest func-
tionality in the vertex shader. The fragment or vertex program is uploaded
from the CPU to the GPU, delivered to OpenGL in a textual format. The
uploaded program is then executed for all consecutive processing of vertices
and fragments. This execution is conceptually in parallel for all vertices and
for all fragments (i.e. the program is run once for each vertex or fragment)
but in reality the program is run in parallel in smaller batches of vertices
and fragments. Two of the most recent cards report 48 pixels pipelines
(ATI Radeon X1900XT) and 24 pixel pipelines (Nvidia GeForce 7900GTX
) respectively.

In the remaining section we discuss specific instances of vertex and frag-
ment programs and the improvements of each new generation. In the year
2000, vertex processing was exposed through the NV_vertex_program [108]
extension in OpenGL3. In 2001 the NV_fragment_program [36] extension
allowed programmers to access fragment programs in OpenGL. These ex-
tensions were developed by Nvidia and were consequently specific to the
Nvidia line of graphics hardware. The OpenGL Architecture Review Board
(ARB) governs the official OpenGL specification as well as ARB approved
extensions. In 2002 the ARB released the ARB_fragment_program [117] and
ARB_vertex_program [33] extensions. The ARB specification for fragment
and vertex programmability has been implemented by all major graphics
card producers, including Nvidia and ATI. This first generation of pro-
grammability in fragment programs allowed for general calculations and
texture lookups in fragment programs and general calculations in vertex
programs. Initially, both vertex and fragment processors worked in a single
instruction multiple data (SIMD) perspective, where the same instructions
are executed for all elements, allowing for optimizations of the computa-
tional hardware. Through Nvidia-specific extensions the vertex shader was
rather quickly allowed to do real branching [35].

The instructions of both vertex and fragment processor operate on four-
tuples of data, i.e. (x, y, z, w) in space or (r, g, b, a) as a color. The vertex
processor can do computation based on incoming per-vertex attributes (typ-
ically a maximum of 16 four-tuples) and per-program constants, resulting
in a vertex position, colors, texture coordinates (typically a maximum of 8

2The terms pixel and vertex shader comes from the launch of DirectX 8. In OpenGL
the same functionality has also been called vertex programs, fragment shader and fragment
program - hence the naming is now somewhat ambiguous.

3Although register combiners had been exposed earlier and not mentioned specifi-
cally in this thesis, the Nvidia line of fragment and vertex programs are mentioned
here since later extensions in the form of options were added by Nvidia to the standard
ARB_fragment_program.

6.2. VERTEX AND FRAGMENT PROGRAMS 67

four-tuples), and a few other results. The fragment processor can do com-
putation based on the interpolated incoming vertex attributes in the form
of colors and texture coordinates, resulting in a color4 and possibly a depth
value. Each vertex can only write to its “own” vertex attributes and each
fragment can only write to its fixed location in the framebuffer. The ini-
tial programming of the graphics-cards was rather difficult since one had
to work under a couple of severe constraints. The instruction count5 was
limited, the number of texture lookups was limited6, the number of regis-
ters available was limited. Through the evolution of graphics hardware and
drivers these limitations are much less obtrusive today than in the beginning
of fragment and vertex programmability. Our first attempt at the compu-
tation of a Spring-Mass model on the GPU was on an ATI 9800 PRO in
the early summer of 2003. Due to the constraints of that time, four passes
of fragment programs were necessary for our computations, compared to
our current one-pass program which easily fits within the resource limits
of today. Other limitations are inherent in the programming model of this
generation of cards though;

• No stack or heap - only a constant number of registers

• No integer or bitwise operations

• No branching - instead one must use conditional write of data, i.e.
there is no ”skipping” computation

In 2004 the Shader Model 3.07 was announced. This corresponded with
the release of the GeForce 6800 series of GPUs from Nvidia which imple-
mented this functionality as the first graphics hardware producer. Apart
from more resources for the fragment and vertex programs SM3.0 included
new functionality. Of importance to this thesis, the fragment processor got
instructions for doing native true branching [37] and the vertex processor got
instructions for doing texture lookups [34]. This functionality was exposed
in OpenGL through extensions to the fragment and vertex programs.

The SM4.0 standard and Direct3D 10 has been released [22] and will in
large determine the functionality of upcoming graphics hardware. Amongst
the features are a stronger requirement of implemented features to avoid
graphics-card specific code paths, a geometry shader, and a “common core”
virtual machine as the base for the three programmable stages.

4One can write to several framebuffers through an extensions known as Multi Render
Target though.

5Actually the ALU instruction count
6and divided into dependent and independent based on whether the address used was

based on previous calculations in the fragment program or not
73.0 since this was the version in Direct-X

68CHAPTER 6. GENERAL PURPOSE COMPUTATION ON THE GPU

6.3 High-Level GPU Programming

The native fragment and vertex programs of GPUs are low level program-
ming mixed with some high-level features. Working under the initial very
tight resources it made good sense to work directly in the low-level fragment
and vertex programs - rather quickly though high-level languages appeared.
let us first look shortly at shader languages in general. Robert Cook is tra-
ditionally attributed with laying the grounds for shader languages through
his work with shader trees in 1984 [49]. In Cook’s shader tree, computation
is arranged in a tree of operations, evaluated postorder to result in the final
color in the root of the tree. In 1988 the RenderMan Interface Specifications
was release[156]. The RenderMan language by Pixar was the first successful
language, or protocol, describing the interface from modeling to rendering.
Of interest to us is the RenderMan shading language. This shading lan-
guage was targeted for high image quality and defined five different shaders;
light, displacement, surface, volume and imager. Like its later successors
the language is a C-like syntax.

The Stanford Real-Time Shading Language [157] was the first attempt
at a high-level shading language built for the pipeline of modern graphics
processors. The motivation was to create a simple abstraction of graphics
hardware in the year 1999 with internal support for multi-pass rendering
and the initial difficult programmability of GPU’s. A cooperation between
Microsoft and Nvidia resulted in the two very similar languages HLSL (High
Level Shading Language) for Direct3D by Microsoft and Cg (C for graphics)
by Nvidia in 2002. Cg is a compiler and runtime system for a range of
platforms and target languages, supporting all the different fragment and
vertex languages of OpenGL as well as Direct-X. Most important to this
thesis is the fact that Cg delivers a high-level programming language8. Cg
has been used exclusively as a high-level GPU language in this thesis in
conjunction with low-level native fragment and vertex programs. OpenGL
Shading Language9 [164] is an ARB extension to OpenGL10 that seeks to
create a high-level shading language for OpenGL specifically.

6.4 GPGPU and Performance Issues

In this section I will discuss, in general, the resources available on the GPU
for general purpose computation. In chapter 7 I will discuss this in more
detail with respect to the implementation of surgical simulation. From the
previous sections it is evident that the GPU can be programmed in a general
purpose way, one element is still missing though; main memory access. The

8and a compiler which in the later versions outperforms the earlier hand-optimization
of native fragment program code by the author

9Also called GLSL or GLslang
10and part of the core OpenGL 2.0

6.4. GPGPU AND PERFORMANCE ISSUES 69

programming model of fragments and shader defines no permanent memory
so this has traditionally been dealt with in other ways. Textures are the
natural choice since fragment programs read from textures. Two additional
issues are of importance; the format of the textures and how to write to
textures (or render-to-texture). In the initial papers on GPGPU such as
[91] only 8-bit textures were available and writing to textures was realized
through a copy-operation of the active framebuffer to a texture, from which
the data could subsequently be read. The basic method of reading from and
writing to textures is still used, but the initial use had two issues; precision
of data and a potential bottleneck due to the copy-operation.

8-bit precision is simply not sufficient for scientific calculations. Later
extensions to the GPU has allowed floating point precision textures, first
through some vendor specific extensions [122, 32] (with various limitations),
and later through an ARB approved extension [110]. One thing to notice
is that the support for texture-filtering (e.g. bilinear filtering) is potentially
not hardware accelerated11 .

To alleviate the bottleneck of a copy-operation on the GPU in conjunc-
tion with render-to-texture functionality a number of extensions were in-
troduced in 2000/2001; pixel buffers and render textures. A pixel buffer is
an off-screen framebuffer that can be rendered to, and the render texture
allows a color-buffer to be used for both rendering and as a texture. This
method of implementing render-to-texture is often just called PBuffer, and
will be named so in the rest of this thesis. The problem with PBuffers is
that each PBuffer has an OpenGL render context which can take up re-
sources. Changing OpenGL context is also a potential bottleneck. In 2004
a more general handling of framebuffers and textures was proposed in the
framebuffer-object (FBO) extension [102] by the ARB. The FBO extension
allowed for a much easier implementation of render-to-texture and theoret-
ically for a faster performance, although this has not been the case yet for
our use of the GPU.

An important issue in programming of the GPU is that even though we
have high-level programmability (as demonstrated in the previous chapter)
there is a clear distinction between register-based calculations and reading
and writing to “main-memory” on the GPU. Like the CPU, registers are nat-
urally the fastest level in a hierarchy of storage. Consequently the developer
of GPU applications is forced to be aware of the memory-hierarchy, unlike
programming the CPU in a high-level language where register allocation,
including loading and saving to memory, is usually handled by the compiler.
High level languages for the GPU as presented in the previous section do a
“simple” register allocation for variables in the programming language, but
if there are too few registers to express the program the compilation will fail.

11at the time of writing the GeForce 6800 series and GeForce 7900 series support bilinear
filtering in 16 or 8 bit only

70CHAPTER 6. GENERAL PURPOSE COMPUTATION ON THE GPU

One reason that it might be a good idea to be aware of these issues is natu-
rally the general tendency of memory latency to increase as well as memory
bandwidth to decrease relative to speed of calculation [58]. An alternative
way of working with computation and communication is formalized in the
stream processing paradigm, where a stream of data elements (a texture
of texels) is manipulated by a kernel of computation (fragment program),
that is executed for each element and resulting in a new stream for further
processing. Kernels can thereby work on elements as in a pipeline using
local chip memory for input/output stream elements to minimize external
memory bandwidth (read and write to textures in our case). The computa-
tional strategy is to have the memory latency hidden through parallelism,
interleaving memory access and computation. This strategy is utilized by
the modern GPU making it a cost-efficient parallel processor that has a
significantly higher floating-point throughput than a CPU from the same
generation of chips. This performance-gap widens with every generation
[43]. The fact that the GPGPU processing model fits very nicely into the
stream programming paradigm has been recognized in [40]. In most GPGPU
research the fragment processor has been used for doing the heavy part of
the calculation since there are basically more fragment pipelines than vertex
pipelines. The vertex processor can read texture-memory, but this is still a
major bottleneck.

The layout of basic computation for a GPGPU program is the following;
rendering of a framebuffer filling quad initiates computation on all frag-
ments. The vertices of the quad are given texture-coordinates that map
one-to-one to the texture used for data. Results of the computation are
written through render-to-texture to another texture and can be used for
input in subsequent computations. The texture read from, and the tex-
ture written to, are in most cases two different textures since problems of
a deterministic read and write would otherwise occur. Let us now look at
the addressing available from the vertex processor. Rendering a screen fill-
ing quad would interpolate the per-vertex attributes across the entire quad,
i.e. a memory addressing based on these per-vertex attributes must fit that
interpolation. This gives a minimum of flexibility with respect to memory-
addressing, enforcing a specific layout of data, but it is very fast since only
four vertices must be processed and addresses are determined by the raster-
izer. In the opposite end of a scale of flexibility in memory addressing is the
most general case where each individual fragment needs a unique memory-
address in the form of texture coordinates not expressed efficiently though
linear interpolation. In such a case we could render a point-sized (fragment-
sized) geometric-primitive with the unique texture coordinates. In such a
use, the vertex processor could very easily become a bottleneck, but this
allows for the most flexible addressing from vertex to fragment. Often we
must find a middle-way between these two extremes. Another level of ad-
dressing to consider is using the values in texture as texture-coordinates to

6.5. APPLICATIONS OF GPGPU 71

implement pointers.

6.5 Applications of GPGPU

A number of different applications have been sought implemented on the
GPU in the hope of better performance. In chapter 7 we will specifically talk
about techniques of use for surgical simulation, including linear algebra12.
In this section we will therefore look shortly at other selected applications
of GPGPU.

In this section I will in short present two different methods of ray-tracing
on the GPU. This is of specific interest in GPGPU since ray-tracing in itself
is a rendering method, but is not easily expressed in the programmable GPU.
Ray-tracing is basically a rendering method in which rays are traced from the
eye, bouncing off material or refracting through material, to a light source.
Important to our discussion is that bouncing rays around the scene is based
on finding intersections with rays and triangles. Two different strategies
have been presented; [44] using the GPU for ray-triangle intersections in a
CPU based ray-tracer, and [159] implementing13. the entire ray-tracer on
the GPU.

The strategy in Carr et al. [44] is to use both the CPU and GPU, divid-
ing computation based on what the CPU and GPU does best. This should
enable both CPU and GPU to be kept busy with computation, utilizing the
combined computational power. In [44] it is recognized that the GPU could
effectively do a sequence of ray-triangle intersection tests. Since the CPU is
good at anything involving complex branching, sorting, and advanced data-
structures, the CPU will setup the ray-triangle intersections for the GPU.
One pass of the GPU-algorithm reports intersections between all rays and
one triangle. That is, each fragment is responsible for computing intersec-
tion between one ray and the current triangle. The information on triangle
location is given as per-vertex attributes. For each triangle associated to the
current batch of rays a rendering-pass of the algorithm is executed. Each
pass checks if any potential intersection with the current triangle is closer
than anything else so far. The only thing kept in memory on the GPU is
ray origin, ray direction and closest intersection. This all maps directly to
the fragment in question and is consequently just saved in several PBuffers
of the same size.

The strategy in Purcell et al. [159] is to implement the entire ray-tracer
on the GPU. To do this, data structures for triangles, materials and rays
must be kept on the GPU. Furthermore to be practically usable, an acceler-
ation structure for ray-triangle intersection test is used. In [44] this accelera-

12One reason for this division is that chapter 7 is based on a published paper.
13Although it could not actually be implemented at the publication time of the article,

the target platform was released a few months later

72CHAPTER 6. GENERAL PURPOSE COMPUTATION ON THE GPU

tion structure would be kept on the CPU. The acceleration structure used is
a simple grid-based partitioning of triangles. That is, the GPU-memory will
be used for grid cells and references to triangles which again reference mate-
rial parameters. As in [44] each fragment is responsible for one ray, but now
each fragment can be in several states; ray traversing the grid, ray triangle
intersection, final shading and finished. At the time of publication Purcell
et al. used one pass per state since only conditional write was available.
Today the true branching of SM3.0 could be used as well.

The two papers clearly take different approaches to accelerating ray-
tracing through a GPU implementation. Carr et al. suffers from potentially
slow read-back of intersection results for each batch of tested rays and trian-
gle. There is more flexibility in choosing an acceleration structure though,
and assuming a good ray-coherence for each pass the missing acceleration
structure for each pass of rays would not be a problem. The large amount
of synchronization between GPU and CPU in Carr’s ray-tracer is also a
potential problem, whereas Purcell et al. can produce the final image from
geometry on the GPU. Carr on the other hand utilizes both GPU and CPU,
where Purcell et al. can potentially suffer under the lack of efficient flow
control on the GPU and an idle CPU. In a SM2.0 implementation many
fragments might be idle since they are in different state, and in a SM3.0
the true branching might not be as efficient since close fragments have some
probability of being in different states. With this discussion of implementa-
tion we should have some idea of the choice we have to make in GPGPU.

Chapter 7

Surgical Simulation on
Graphics Cards

In this chapter we return to the subject of surgical simulation, but this time
with the knowledge of the programmable graphics cards. This chapter is
based on the review paper [10] and is an introduction to surgical simulation
implemented on graphics hardware. This chapter has been changed slightly
compared to the original article with some additional cross-references and a
more detailed comparison of Spring-Mass implementations. For this chapter
to stand alone and still resemble the original contribution, some overlap in
topics with the subsequent chapters must be anticipated.

7.1 Introduction

General-purpose computation using graphics hardware (or GPGPU) is a
research area that has grown rapidly in recent years. By using the mod-
ern graphics card (i.e. the GPU) for computations, many computationally
heavy algorithms have been accelerated significantly compared to conven-
tional CPU-based algorithms. This includes most of the techniques currently
being applied in surgical simulators. Unfortunately, the GPU is difficult to
utilize efficiently. A substantial knowledge of its design, programming model,
and limitations is necessary for optimal results. This chapter is intended as
an introduction to GPGPU aimed specifically for researchers with experi-
ence in surgical simulation, who wish to attempt a GPU implementation of
their algorithms. We review the literature introducing the most important
concepts, and discuss the hardware limitations we must adhere for optimal
results.

An overview of the many applications of GPGPU is best obtained by
exploring the on-line resource [89] and the books in the GPU Gems series
[65, 153]. Moreover these surveys [149, 177] and course material [41, 42] high-
light some commonly used algorithms. The survey by Strzodka et al. [177]

73

74 CHAPTER 7. SURGICAL SIMULATION ON GRAPHICS CARDS

has a well-written introduction to scientific computation on the GPU. Based
on a general data abstraction model for parallel programming, streams, a
compiler and run-time system is available [40]. A few getting-started tu-
torials are available here [76]. This paper extends these references with
a survey and discussion of GPU accelerated techniques aimed specifically
towards surgical simulation.

7.2 GPGPU Concepts and Performance

The standard graphics pipeline in OpenGL and DirectX contains fixed func-
tionality vertex and pixel shaders. A basic knowledge of this pipeline is as-
sumed in the remaining chapter, and only a brief review is provided below.
More information can be found in e.g. [130]. The vertex shader transforms
the geometry (triangles) received from the application from local object
space coordinates to window coordinates through a series of transforma-
tions. The color and texture coordinates are also computed for each vertex.
The geometric primitive is subsequently rasterized, a term that describes
the process in which the color of each pixel in the primitive is computed.
The pixel shader is responsible for computing these colors. Based on each
pixel’s spatial position in the geometric primitive, the pixel shader receives
the per-pixel interpolated color and texture coordinates as input. The fixed
function pixel shader then computes the output color as a function of the
input color and the texture colors. The texture colors are found from texture
lookups using the per-pixel input texture coordinates.

In the past generations of GPUs the vertex and pixel shaders have grad-
ually become fully programmable. In GPGPU we utilize this to write pixel
shaders that no longer compute colors, but instead the scalars and/or vectors
involved in a general computation. Each pixel can store a 4-tuple of floating
point values in up to 32 bit precision per entry. We store the computed
pixels directly in a non-visible GPU memory buffer as it is no longer mean-
ingful to visualize these pixels directly. This buffer is actually a texture
that can be used as input for subsequent iterations of our computations.
Hence we have established a computational model in which we can both
read from and write to GPU memory. A custom vertex- and a custom pixel
shader program are uploaded to the GPU and applied in the subsequent
processing of primitives in parallel. Due to this parallel nature of the GPU
(the Radeon X1900XT has 48 pixel pipes, a GeForce 7900GTX has 24 pixel
pipes), a high throughput can be obtained. A CPU-based physical simula-
tion typically stores data in one-, two-, and three-dimensional arrays. On
the GPU, data is stored instead in one-, two-, or three-dimensional textures.
As the GPU works most efficiently on two-dimensional data structures, we
transform both 1D and 3D textures to 2D textures in practice [90]. Natu-
rally, some bookkeeping is necessary to handle this transformation. When

7.2. GPGPU CONCEPTS AND PERFORMANCE 75

Figure 7.1: Observed performance from the most recent generations of
Nvidia and ATI GPUs. Data was obtained using GPUBench [39]. Blue
diamonds represent the shader performance measured in GFlops. Cache,
sequential, and random memory access measured in GB/s are depicted in
the remaining graphs.

a computation is invoked, the pixel shader receives an input texture coor-
dinate that identifies the spatial position of the corresponding pixel in the
input textures. If the algorithm requires access to neighboring pixels, this
is achieved by offsetting the input texture coordinate before looking up in
the respective textures. These offsets can be either global constants or ob-
tained through an additional texture lookup at the current pixel. As will
be explained in section 7.3, the type of offset depends on the underlying
spatial discretization of the computational domain; whether it is structured
or unstructured.

Using the benchmark test suite GPUBench [39] an overview of the per-
formance of a system’s GPU can be obtained. Figure 7.1 shows the graphs
for the most recent GPUs from Nvidia and ATI. Looking at the number of
floating point operations available per second (Flops) it can be observed that
the current performance leaders provide roughly 250 GFlops. This number
was obtained from the GPUBench test instrissue. This test measures the
number of MAD instructions that can be executed per second on the present
GPU. Since each shader operates on 4-tuples of floating point values and
each MAD operation constitutes two floating point operations (a multiplica-
tion and an addition), the values reported by instrissue are multiplied by
8 for conversion to GFlops. Compared to the theoretical peak performance
from a state-of-the art CPU (7.4 GFlops / 3.8 GHz Intel Xeon [59]) it should
be clear why a GPU implementation of a surgical simulation can potentially
boost performance. Discussing potential performance gains merely based on
the shader speed reported in 7.1 does not provide a fulfilling picture how-
ever, as a typical GPU implementation of a surgical simulation would not
be compute bound. More likely it would be memory bound - meaning that
access to GPU memory would be the limiting factor. Consequently, figure
7.1 contains three graphs showing the observed memory bandwidth on the
most recent GPUs. They are based on data obtained running GPUBench’s

76 CHAPTER 7. SURGICAL SIMULATION ON GRAPHICS CARDS

Figure 7.2: Cache hit memory access costs as a function of the number of
shader instructions. Data was obtained from the most recent generations of
Nvidia (left) and ATI (right) GPUs using GPUBench [39]. The number of
texture fetches in each test was varied from 1 to 6.

floatbandwidth test on the respective GPUs [39]. It can be seen that cache
memory access is significantly faster than sequential and random memory
access. The cache memory bandwidth constitutes an upper limit in memory
bandwidth, hardly attainable in real-world applications. Depending on the
memory coherence of a given application, the growth in memory bandwidth
could instead follow the lines depicting the sequential or random memory
access bandwidth. Thus, designing memory coherent algorithms is of utmost
importance.

To discuss whether a given application is compute or memory bound,
the literature (e.g. [153]) defines the arithmetic intensity of an application
as the amount of work that is performed per memory access. Applications
with high arithmetic intensity are most likely compute bound while low
arithmetic intensity is an indication of a memory bound algorithm. To dis-
cuss this issue in more detail, we once again resort to GPUBench: The test
fetchcosts shows the execution time of a GPU program as a function of the
number of instructions. Figure 7.2 shows the results from this test on two
GPUs. Note that each test is comprised of six sub-tests that perform one to
six memory cache accesses each. We will discuss below the results obtained
on an ATI Radeon GPU. A similar (but not entirely identical) discussion
can be made for the Nvidia based GPU, but we leave this discussion for the
reader to complete. First notice the horizontal line segments in the right-
most half of figure 7.2 They show that for each memory access, a number of
“free” computations can be made without influencing the overall execution
time. Only as the non-horizontal (diagonal) part of the graph is reached,
there is a cost associated to issuing additional instructions. From the figure
we can predict the execution time of an application consisting entirely of
memory reads (solid black line). Notice that the slope of this line is much
steeper than the slope of the diagonal. The diagonal constitutes the bor-
der between a memory bound and a truly compute bound application: An

7.3. SURGICAL SIMULATION ON THE GPU 77

application with an arithmetic intensity that places it between the leftmost
solid line and the diagonal is memory bound, while an application with an
arithmetic intensity that places it on (or close to) the diagonal would be
compute bound. As we shall see in the subsequent sections, surgical simu-
lation algorithms implemented on the GPU are most likely memory bound,
as the complexity in algebraic operations per memory access is limited. Ex-
periments show however, that these GPU-based algorithms still significantly
outperform their CPU-based counterparts.

7.3 Surgical simulation on the GPU

Many computational models for deformable surfaces have been proposed in
the existing literature. We refer to the surveys [131, 81] and the chapter
5 for a detailed overview. We limit our description of GPU-based tech-
niques to mesh-based deformable models (most often a mesh of triangles,
tetrahedrons, or cubes) as this is the preferred approach in real-time sur-
gical simulators that must handle arbitrary incisions and general changes
in topology. For the remaining chapter we refer to nodes as the discretized
points defining a mesh. We present an overview of the required GPU-based
techniques to implement the most common deformable models: finite ele-
ment models and Spring-Mass models. The reader should subsequently be
able to define custom modifications to these general models in GPU terms.
The implicit linear elastic finite element models presented in section 5.1
are discussed in section 7.4. The explicit finite element model (tensor-mass
model) presented by Cotin et al. in [57] and the explicit Spring-Mass model
from section 5.2 are discussed in section 7.5. Szekely et al. used a cluster
of processors in [180] to realize a laparoscopic surgery simulator. Many of
the general considerations on the design of parallel algorithms for numerical
computations on multiple CPUs transfer directly to the parallel processor
we introduce in this chapter, namely the GPU.

7.4 Implicit Finite Element Models

Using the notation section 5.1, finding the deformations in the implicit lin-
ear elastic finite element model reduces to solving either a static system on
the form Ku = f or a dynamic system on the form M ü + Cu̇ + Ku = f ,
where M and C are diagonal mass and damping matrices, K is a symmetric
positive definite matrix representing the topology and stiffness of the dis-
cretized mass points, and u and f are the deformation and external force
vectors respectively. No matter the choice of system, it can be rewritten
on the form K̃ũ = f̃ following a finite difference time discretization for the
dynamic system [30]. If we let n denote the total number of mass point in
the finite element discretization, K̃ has dimensions 3n x 3n and entry kij

78 CHAPTER 7. SURGICAL SIMULATION ON GRAPHICS CARDS

Figure 7.3: Structured (left) and unstructured (right) tetrahedral meshes.
The choice of tetrahedralisation influences the layout of the resulting stiffness
matrix in a linear elastic finite element model.

encodes the connectivity and stiffness between nodes i and j. In its most
elementary form K̃ is sparse having non-zero entries only between connected
mass points. Depending on the choice of spatial discretization, it can either
be structured (banded) or unstructured. Figure 7.3 (left) illustrates a spa-
tial discretization that leads to a banded matrix. Boxes (possibly consisting
of six tetrahedra of fixed topology) are used as the basic spatial building
blocks in a regular three-dimensional grid. The rightmost tetrahedralisation
in figure 7.3 on the other hand, leads to an unstructured sparse matrix. Fi-
nally, using the condensation technique described in [30] and section 5.1.4,
K̃ can be transformed to a smaller dense matrix of boundary nodes. We
have distinguished between the different layouts of K̃ since they each call
for their own distinct representation on the GPU. The three matrix layouts
are 1) sparse (banded), 2) sparse (unstructured), and 3) dense. Solving the
linear system of equations involves matrix and vector algebra. We discuss
common linear algebra operations below for the different representations of
K̃. This is followed by a discussion on GPU-based solutions to the linear
system.

The first formulation of a general framework for numerical algebra on
the GPU was published by Thompson et al. in [183] in a very machine-near
language. Inspired by the BLAS and LAPACK libraries [60, 17], Krueger et
al. subsequently published their initial work on a GPU-based counterpart
[153, 111].

7.4.1 Sparse Banded Matrices

Figure 7.4(top) shows the representation in [111] of sparse banded matri-
ces. Each band in an n x n-dimensional matrix A can be seen as a one-

7.4. IMPLICIT FINITE ELEMENT MODELS 79

A1

A2

A3

A2

b

A1

b

e

b

A3

Matrix A

Vector b Vector Ab

1D arrays 2D textures

Figure 7.4: GPU representation of a sparse banded matrix A, a vector b,
and the corresponding matrix-vector multiplication (adapted from [111]).
Top: Each band represents a one-dimensional array which is stored in a 2D
texture on the GPU (A1-A3). Zeroes are prepended or appended depending
on the position of the band in the matrix. Bottom: A vector b is defined
and multiplied to A. Each band in A is multiplied with b pixelwise. The
products are added to form Ab. Notice that the texture coordinates used
to access b are offset corresponding to each band.

80 CHAPTER 7. SURGICAL SIMULATION ON GRAPHICS CARDS

Matrix A
Dense GPU

representation

Vector b

Figure 7.5: Unstructured sparse matrix representation specialized from [23].
We assume exactly three non-zero entries per row in this example (gray).
These values are stored in a dense texture. For each pixel in this texture a
pointer (i.e. texture coordinate) to the corresponding entry in vector b is
stored (arrows).

dimensional vector of length n. As explained in section 7.2, we convert this
vector to a two-dimensional texture on the GPU. Similarly, vectors b and x

of dimension n are stored in textures of identical dimensions to the bands of
A. In many computations it is necessary to find the matrix-vector multipli-
cation x = Ab. To achieve this we render a quad covering output texture
x in multiple passes; one rendering pass for each band in A. Figure 7.4
(bottom) illustrates the three passes required for a tri-banded matrix-vector
multiplication with this representation. In each pass the values in corre-
sponding pixels in textures A and b are multiplied and added to x. In each
pass (except the pass using the matrix diagonal) the texture coordinates
used to look up pixels in b are shifted to account for the corresponding
band position. Several optimizations to this basic scheme is possible and
discussed in [153, 111]. Since it is not possible to read from and write to the
same texture during a pass, the accumulative writes to texture x must be
implemented through two textures, one of which is bound as input and the
other for writing in an alternating fashion. It is important to realize the par-
allel nature of the algorithm: For each of the three passes in the example in
figure 7.4, the n entries in the result vector x are computed simultaneously,
providing a significant speedup to CPU-based matrix-vector multiplications
given a sufficient number of pixel pipes and texture memory bandwidth.

7.4.2 Sparse Unstructured Matrices

Sparse unstructured matrices are handled differently from the banded ma-
trices above. Krueger et al. [153, 111] renders point-based primitives to
implement such matrix-vector multiplications. We will instead describe a

7.4. IMPLICIT FINITE ELEMENT MODELS 81

different approach using texture pointers, as this relates nicely to this sec-
tion’s subsequent discussion of algorithm design that minimizes memory
bandwidth. We illustrate a specialization of the general sparse unstructured
matrix-vector multiplication by Bolz et al. [23] to find the product x = Ab.
We assume that a constant number of non-zero entries exist in each row
of the sparse nxn dimensional matrix A. In figure 7.5 we use only three
entries per row to reduce the size of the figure. We create a one-dimensional
array of length 2x3xn to represent A. 3n entries are necessary to store the
non-zeroes values in A. Furthermore, for each value we additionally store a
pointer to the corresponding entry in textures b. As always, we represent
this one-dimensional array as a two-dimensional texture on the GPU. We
render a quad covering our output texture x to initiate the parallel compu-
tation of Ab. For each pixel we look up the three non-zero values in the
corresponding row in the texture representation of A from the input texture
coordinate. The texture representation of A furthermore provides us with
three pointers (texture coordinates) that are used to look up the values in
b corresponding to the non-zero entries in A. The results from the three
multiplications are added and stored in x. Again, it is important that the
reader recognizes the parallel nature of the algorithm, in which each entry
in x is computed in parallel.

With the understanding of sparse matrix representations on the GPU,
the reader should have the prerequisites to derive representations of dense
matrices as these are more straightforward than those of sparse matrices.
We refer to [153, 64, 73] for completeness.

We now return to solving the linear system K̃ũ = f̃ that was defined
initially in this section. Since K̃ is symmetric and positive definite, one
approach to finding ũ is through the conjugate gradient algorithm. Using
their respective frameworks for linear algebra, both Krueger et al. and Bolz
et al. showed how to implement the conjugate gradient algorithm on the
GPU in [111, 23]. An alternative approach guaranteed to converge to the
right solution for arbitrary starting configurations is the Gauss-Seidel iter-
ative process (again since K̃ is symmetric and positive definite). Contained
in [111] is a short section discussing the implementation of this algorithm on
the GPU. Closely related to Gauss-Seidel’s method is the Jacobi method.
In contrast to Gauss-Seidel’s methods, Jacobi’s method is ideally suited for
a parallel implementation. For this reason it has been used intensely in
previous GPGPU publications, e.g. in several chapters in [153, 65], and in
[82, 165].

The representation of banded matrices as shown in figure 7.4 results
in a minimum number of texture fetches: only the actual values needed
for a matrix-vector multiplication are read from texture memory. The un-
structured sparse matrix representation on the other hand requires further
texture lookups to perform a matrix-vector multiplication, as pointers are
stored in textures and the corresponding values only obtained through an

82 CHAPTER 7. SURGICAL SIMULATION ON GRAPHICS CARDS

additional texture lookup. Looking back at the discussion related to figure
7.2 it should be clear why the banded representation performs better than
the unstructured alternative. It is simply due to the lower number of texture
fetches involved. Consider also the limited number of algebraic operations
performed per memory access in both approaches (that is the arithmetic
intensity is low). Given the memory bandwidth on current GPUs both ma-
trix representations are memory bound, although positioned differently in
the graphs in figure 7.2. It was Fatahalian et al. who initially reported
that memory access is indeed the limiting factor for dense matrix-matrix
multiplications on the GPU [64].

The reader is encouraged to examine the GPU-based surgical simulator
by Wu et al. [196]. They used an implicit finite element solver through
the conjugate gradient algorithm and obtained a two-fold acceleration. This
work was done on an Nvidia GeForce 5950 Ultra however. As is clear from
figure 7.1, both the GPU speed and memory bandwidth have increased five-
to ten-fold since on the most recent GPU’s.

7.5 Explicit Models: Spring-Mass and Tensor-Mass
Models

We return to the general equation of Newtonian motion: M ü+Cu̇+Ku = f
[30, 57]. We now seek to solve the system of differential equations through
an explicit time integration scheme rather than by the implicit method dis-
cussed in section 3.1. A particularly well suited explicit integration scheme
is Verlet integration [187], a scheme in which the position of each mesh node
for the subsequent time step is calculated from its positions in the two pre-
vious iterations and from an elastic force vector (acceleration vector). No
additional information, e.g. velocities, needs to be stored and calculated.
The force vector is calculated locally from each node’s connectivity in the
mesh. We denote the force vector corresponding to a Spring-Mass system
as f̂i and the force vector relating to the tensor-mass system as f̃i. Using the
notation from [57] these forces are then defined as

f̂i =
∑

j∈N(xi)

kij(‖xixj‖ − l0ij) −
xixj

‖xixj‖

and

f̃i = Kiix
0
i xj +

∑

j∈N(Pi)

Kijx
0
jxj

where xi denotes the position of node i, x0
i is the initial (undeformed)

position of node i, xixj is the vector between nodes i and j, lij and kij is the

7.5. EXPLICIT MODELS: SPRING-MASS AND TENSOR-MASS MODELS83

Figure 7.6: Position texture, inspired from [5]. A regular 3D grid of nodes
is mapped to a 2D texture. The colors of the individual pixels denote the
corresponding particle’s position.

spring rest length and stiffness respectively between nodes i and j, and K
is the rigidity (or stiffness) matrix of the linear elastic finite element model.

A two-dimensional GPU- and Spring-Mass based cloth simulation using
Verlet integration was presented in [86]. It is sufficiently simple to be rec-
ommended for inexperienced GPU programmers. The author presented a
three-dimensional, volumetric Spring-Mass based surgical simulator imple-
mented on the GPU in [3, 5]. This method is presented in full in the next
chapter, chapter 8. [5] compares two Spring-Mass implementations, one in
which nodes were confined to a regular three-dimensional grid, and one in
which node positions were unrestricted and springs explicitly represented
in a connectivity texture. Overall, a twenty-fold acceleration over a simi-
lar CPU-based system was achieved for the first method, while the latter
achieved a ten-fold acceleration. Our results were obtained on a GeForce
6800 Ultra. It is clear from figure 7.1 that both the shader speed and memory
bandwidth have increased significantly since and even better results could
be obtained on the most recent generations of GPU’s. In the faster of the
two methods they use a position texture to store the positions of the nodes
in the Spring-Mass system. An example of one such texture is depicted in
7.6. To initialize parallel computation of each time-step, a quad at the size
of this texture is rendered in the output buffer. A depth test is used to pre-
vent that calculations are wasted on the white (void) particles. The forces
are computed for each pixel (node): The two most recent position textures

84 CHAPTER 7. SURGICAL SIMULATION ON GRAPHICS CARDS

are provided as input textures to the pixel shader. By adding to the input
texture coordinate the fixed offset to each neighbor, each neighboring node’s
position can be looked up. As the nodes are restricted to a regular grid, the
individual spring’s rest lengths are known and need not be looked up. Fur-
thermore, the spring stiffness is also kept constant. Thus, the only texture
fetches involved are those used to obtain the connected node’s positions. I.e.
we use only the minimal number of texture fetches. This is important in
the light of the discussion concerning the cost of texture fetches (See figure
7.2). Our alternative approach uses texture lookups to fetch the texture co-
ordinate of each neighbor, essentially working as a list of pointers to nodes.
This doubles the overall number of texture fetches, consequently reducing
the simulation rate by a factor of two. Replacing the spring induced forces
f̂i with the tensor-mass forces f̃i would instead solve an explicitly formulated
finite element model. For each connected node we need then an additional
texture lookup in the stiffness matrix to obtain Kij . Consequently we can
expect the tensor-mass model to run at approximately half the speed of the
Spring-Mass model. Compared to a CPU-based implementation however, it
is still significantly faster. The most recent performance measurements are
found in Sørensen et al. [9], who report simulation rates exceeding 1 kHz
using a GeForce 7800 GTX on a Spring-Mass system consisting of 20.000
nodes connected with 18 neighbors each in a regular volumetric mesh (grid).

7.5.1 Alternative Spring-Mass Systems

Our methods presented in [3, 5] are simple to implement and run fast,
but use a significant amount of texture memory: The position texture ap-
proach wastes memory representing void particles, while the connectivity
texture approach allocates memory for a constant number of neighbors per
node wasting texture memory if the number of neighbors varies significantly
throughout the mesh. Later1 papers [77, 78] and a presentation [198] have
presented alternative methods that we will present and analyze in this sec-
tion.

In [77] Georgii et al. have described the implementation of a Spring-Mass
system on the GPU. The general strategy is the same as our explicit method
in [4], namely to record a list of pointers to neighboring particles. In [77] the
basic structure of the Spring-Mass system is tetrahedrons. Each particle is
related to one fragment as in [4]. For each node, information on all adjacent
tetrahedra are looked up and used for the force calculation. Each tetrahedra
amounts to five texture lookups; two texture-lookups are used to retrieve
texture-coordinates to neighbors as well as spring-stiffness and tetrahedra
volume, and three dependent texture lookups to retrieve the actual position
of the three neighboring particles. Since the number of tetrahedra adja-

1Although only by a few months

7.5. EXPLICIT MODELS: SPRING-MASS AND TENSOR-MASS MODELS85

cent to a given particle is not constant, [77] use a stack of valence textures
to encode different levels of connectivity, ensuring that fragments only do
the number of lookups into tetrahedra that are necessary. This is in con-
trast to our explicit method in [5] where we do lookups proportional to the
maximum number of neighbors (maximum valence). In [77] the same neigh-
boring particle might be subject to a considerable amount of lookups since
each tetrahedra potentially shares edges, and each tetrahedron is handled
separately. This is a serious bottleneck since all the presented algorithms
are most probably memory access bound (See figure 7.2).

In our method in [5] each spring force is calculated exactly twice and
in [77] each spring force is calculated at least twice. This led Georgii et
al. to develop an edge-centric data structure instead [78], that iterates over
springs rather than nodes to calculate the spring-forces. In a first pass
a texture-lookup retrieves positions of neighboring particles of the spring,
this information is used to retrieve the current position of the particles
through two texture-lookups, and finally the spring-force is calculated and
written to the spring-force texture. To scatter the force of each spring to
the two connected particle, two point primitives are rendered at the position
of the connected particles in the texture of particle positions. The actual
force-vector is retrieved through binding the texture of spring-forces as the
color-component of a vertex-array, and the addition of forces is realized
through additive blending of the framebuffer. This reduces the arithmetic
intensity of their algorithm, since each spring force is now computed only
once, whereas they are computed twice in the previous methods [5, 77].
As all the presented algorithms are most likely memory bound (See figure
7.2) this is not a major advantage however. We are more interested in
examining the number of texture fetches used in the edge-centric approach
Let us analyze this in more detail. The number of texture lookups t1per
particle in the edge-centric method of [78] is:

t1 =
e + 2e

p
= 3

e

p

where e is the total amount of edges and p the total amount of particles.
In the implicit method of [5] the number of texture-lookups is simply the
maximum amount of neighbors, E;

t2 = E

for a totally regular mesh, E = 2 e
p

and consequently have this relation
between t1 and t2 :

t2 = E = 2
e

p
< 3

e

p
= t1

In the regular mesh shown in figure 7.6) there are in average 7.5 edges per
particle, and we have a maximum of 18 spring per particle, i.e. e

p
= 7.5, and

86 CHAPTER 7. SURGICAL SIMULATION ON GRAPHICS CARDS

E = 18. Considering this example we get:

t1 = 3
e

p
= 3 · 7.5 = 22.5

and

t2 = E = 18

The comparison is presented here as one perspective on the resource uti-
lization of different methods. The edge centric method [78] is clearly much
more flexible than the implicit method of [5] but at the cost of additional
texture-lookups. Some other factors might turn out to be the bottleneck of
the edge centric method though. The transfer of texels to the color values
of a vertex-array is a function that should be equivalent to a texture-lookup
in performance. (adding another 7.5 to the texture lookups in the example).
The additive blending and rendering of a large number of point-primitives
is using a considerable amount of resources. Blending can furthermore not
be executed in 32bit on current GPU’s. An additional context switch from
spring to particle render-texture is furthermore necessary.

In [198] a cloth simulation based on iterative relaxation (that is, not
Hookean-springs) is realized on the GPU. They divide the spring-constraints
into independent sets that require a pass of the algorithm each. A cloth with
shear and structural springs (as in figure 5.3) would require 8 passes, where
each fragment (representing a particle) does two texture-lookups.

7.6 Visualization and Interaction

Depending on the chosen simulation model, the result of each time step
is either a texture of node deformations (implicit model) or a texture of
node positions (explicit model). In either case a deformed surface triangle-
mesh of the modeled organ can be visualized from a static display list of
the initial mesh configuration through a dedicated vertex shader [5, 3]. For
each vertex in the visualized surface mesh, the application provides the
required texture coordinate to look up the corresponding deformation vector
or particle position. The vertex shader can thus compute the deformed
vertex position for the current time step.

From both section 7.4 and 7.5 it is clear that a structured spatial dis-
cretization of the simulated volume results in the fastest algorithms due to
a minimum number of texture lookups required in each time step. This
can however result in a jagged (stair-like) look of the modeled morphology
as illustrated in figure 7.7. To overcome this problem I propose in chapter
9, based on the paper [6], to fully decouple surface visualization from the
underlying volumetric simulation. Each vertex on the surface model is rep-
resented by an offset from the nearest node in the simulation mesh. Figure

7.6. VISUALIZATION AND INTERACTION 87

Figure 7.7: Surface visualization (circle) DE-coupled from a volumetric sim-
ulation of a sphere discretized to a regular grid (gray). The green circles
represent vertices on the surface mesh that can be sampled at any resolu-
tion. Each vertex is represented by an offset vector (arrow) from the nearest
simulation node.

7.7 shows a smooth surface drawn by this method. The offset vectors are
expressed in the tangent-space of the surface, and the surface thus correctly
deforms based on the deformation of the associated nodes in the simulation
mesh.

Interaction with a GPU-based surgical simulator is the final issue to be
discussed in this chapter. The overall question is whether to resolve user
interaction on the CPU or on the GPU. If the CPU is chosen one must be
careful not to transfer large amounts of data from the GPU to the CPU in
each frame, as this would introduce a performance bottleneck. Consequently,
interaction that involves computations on the current state of the simulation
is probably best implemented on the GPU. Peripheral devices can only be
communicated with through the CPU however, so a minimum amount of
per-frame data transfer cannot always be avoided. In chapter 10 based on
the paper [9] I show how to implement force feedback from a GPU-based
simulator with limited performance penalty. Several groups have recently
published algorithms for GPU accelerated collision detection [85, 194, 48].

88 CHAPTER 7. SURGICAL SIMULATION ON GRAPHICS CARDS

Chapter 8

Spring-Mass on the GPU

The following chapter is a combination of the papers [4, 5] with more details
on the implementation and the current state of the simulator. In particular
section 8.7.1 on probing has been extended with a technique for restrict-
ing the movements of particles into unwanted configurations. I have also
included some illustrative source code from the simulator not previously
available. The original papers included a discussion of a simple visualiza-
tion and a range of screen-shots. In this thesis the issue of visualization will
be delayed until chapter 9 where the missing screen-shots will also be shown
as motivation for a decoupling of simulation and visualization.

8.1 Introduction

Many surgical simulators used in practice are based on Spring-Mass de-
formable models due to performance reasons. The Spring-Mass model is
considered physically based and achieves real-time visualization and fast
convergence for geometry of moderate size.

In surgical simulation in general, there is a trade-off between the costs
of calculations, how realistic the tissue-deformation is reproduced, and how
detailed the morphology being simulated appears. It is our goal to simulate a
very high degree of morphological detail in real-time and use a physics-based
model. As an example, the cardiac morphology is complex and requires a
high degree of geometric detail to be modeled accurately.

The Graphics Processing Unit (GPU) is a programmable parallel pro-
cessor capable of processing vertices and fragments in parallel. The GPU is
designed to perform graphics rendering based on geometric primitives and
resulting in pixel coloring. Recently the GPU has become programmable to
a degree that makes it useful for general-purpose computation.

We present a surgical simulator based on a Spring-Mass system accel-
erated by an implementation on the graphics processing unit (GPU). The
purpose is to achieve a considerable speedup due to the parallel processing

89

90 CHAPTER 8. SPRING-MASS ON THE GPU

capabilities of the GPU. This acceleration could be used to increase the ac-
curacy and convergence of the numerical calculations and to increase the
complexity of the simulated morphology. At the time of writing the paper
on which this chapter is based, only simple Spring-Mass systems had been
implemented on the GPU[86] - limited to simple 2D shapes. Other physical
based systems have been implemented on the GPU previously. E.g. conju-
gate gradients for fluid simulation [23], CML systems for the simulation of
a range of physical based phenomena [91], and more general linear algebra
operators [111]. See chapter 7 for more detail.

Slow data transfer from the GPU to the CPU has been an additional
bottleneck when handling interaction and visualization. With the recent
generation of GPUs (GeForce 6800, Nvidia, USA) both simulation, inter-
action, and visualization of a Spring-Mass based surgical simulator can be
accelerated on the GPU.

8.2 Parallel Computation of the Spring-Mass Sys-
tem

For reference we rewrite the equation of the Spring-Mass system (5.3) from
page 50:

miẍi = −yiẋi +
∑

j

gij + fi (8.1)

Likewise we rewrite the equation for spring forces (5.4) from page 50:

gij = kij (lij − ||xi − xj||)
xi − xj

||xi − xj ||
(8.2)

Lastly we rewrite the equation for Verlet integration (5.5) from page 53:

x(t + h) = 2x(t) − x(t − h) (8.3)

The GPU can in many ways be regarded as a shared memory parallel
architecture, although with many limitations. We will begin by some consid-
erations on the design of a simple parallel algorithm to solve a Spring-Mass
system on a shared memory parallel architecture. Fortunately the solution
to (8.1) is straightforward to parallelize and solve iteratively on a shared
memory parallel architecture. Processor Pi is responsible for updating in-
formation regarding particle xi. At each time-step and for each particle the
following must be done:

1) Calculate spring forces based on the distance to neighboring par-
ticles

8.3. GPU PIPELINE 91

2) Numerically integrate to calculate the new position of particle
xi.

Through the shared memory architecture, processor Pi can retrieve the cur-
rent position of all particles for force calculation. In the next section we
will review the GPU as a parallel processor with shared memory. In section
8.4 we will discuss the implementation of integration of particle positions on
the GPU. In section 8.5 we will represent two methods of representing and
calculating spring forces on the GPU.

8.3 GPU Pipeline

The focus of this chapter is to express the calculation of the Spring-Mass
system effectively in terms of the hardware accelerated features of the GPU.
Recently, the vertex processor and fragment processor have become pro-
grammable. Both processors are parallel processors with a number of pipelines
working simultaneously. Vertex and fragment computation can depend on
previous iterations through texture lookups and render-to-texture function-
ality exposed through Pixel Buffers (PBuffers). A PBuffer can be bound
either as the rendering target or as a texture. Reading from textures and
writing to the rendering target implements shared memory in fragment pro-
grams. Throughout this section we will refer to the PBuffer as a texture
or as the rendering target interchangeably depending on the context. Using
floating point texture extensions we can do computation on IEEE 32 bit
floating point numbers. These features enable general purpose computation
on the GPU.

When rendering a geometric primitive the vertex information is pro-
cessed by a programmable vertex shader. Vertices are transformed and per
vertex information is interpolated and transferred to the programmable pixel
shader. The pixel shader processes this information as well as additional in-
put in the form of textures to compute the final coloring of a fragment (a
generalized pixel).

If we regard each fragment as a representation of a particle position,
we can design fragment programs to solve equation (8.1). An off-screen
rendering buffer (PBuffer) is used to store the calculated positions. Each
position in the PBuffer maps uniquely to the position of one particle. Each
component of each particle position xi = (x, y, z) is represented as a 32-
bit floating point value in the red, green and blue part of a pixel through
OpenGL float-buffer related extensions. The PBuffer containing positions
will in the remaining thesis be referred to as the position texture.

92 CHAPTER 8. SPRING-MASS ON THE GPU

8.4 Integration Loop on the GPU

The fragment processor was chosen for our implementation as there are
generally more fragment pipelines available than vertex pipelines. Equally
important, texture lookups are more efficient in fragment programs.

If we assume for the moment that we have calculated the forces affecting
a particle, we must then design a loop that can integrate the particle posi-
tion. A time-step of the simulation is computed by activating a dedicated
fragment program by rendering a single quad covering the entire PBuffer.
In this program, the supplied texture coordinates refer to particle positions
in the PBuffer. Through a texture-lookup the actual positions are retrieved.
The texture coordinates are given at the vertices of the quad and automat-
ically interpolated throughout all fragments. A one-to-one mapping of the
PBuffer between the input texture and output buffer is then established.

The choice of the numerical integration method is influenced by the
properties of the fragment program’s input and output. Verlet integration
(equation 8.3) is well suited for our GPU implementation since calculations
of future positions depend exclusively on the previous two positions. The
two previous particle positions can be provided as input through textures.
These textures are available from previously written PBuffers. The result
of Verlet integration is the position; this conserves bandwidth compared to
numerical integration resulting in more than one vector.

8.5 Spring Connections and Force Computation

In this section we explain in detail the spring connections and force compu-
tations of two alternative Spring-Mass implementations for the GPU. The
first method represents spring connections explicitly, while particles in the
second method are connected implicitly based on their location in a three
dimensional grid. The explicit method allows the most freedom in represent-
ing spring connections and particle locations at the cost of some simulation
speed compared to the implicit alternative.

8.5.1 A Spring-Mass System with Explicit Connections

In a general Spring-Mass model every particle can be arbitrarily connected
to other particles with no special order assumed. We encode this spring
connectivity in a separate floating point texture, in the following referred
to as the connectivity texture. The usage of the connectivity texture is il-
lustrated in figure 8.1. The connectivity texture defines for each particle pi

a list of springs to particles pj by storing 1) the texture coordinate in the
position texture of each particle pj and 2) the rest length lij and stiffness
kij The connectivity texture remains constant as long as no changes in par-
ticle connectivity are made. From an element of the connectivity texture a

8.5. SPRING CONNECTIONS AND FORCE COMPUTATION 93

h h

1: Lookup addresses of neighbors

2: Lookup neighbor position

Connectivity texture Position texture

maxConnections

maxConnections · w

w

Figure 8.1: Layout of the connectivity texture. For a fragment (x, y)
in the position texture, the connectivity texture contains the texture-
coordinates of neighbors in coordinates (x · maxConnections, y) to ((x +
1)maxConnections, y).

Figure 8.2: Particle connectivity in a 3D grid. Each particle (left) is con-
nected to 18 neighbors (right)

texture lookup provides the neighboring particle position xj. By iterating
over all springs connected to particle pj it is possible to calculate equation
(8.2). If a node has less than the maximum number of neighbors, the spring
rest length or stiffness can be set to 0 to indicate that a given element of
the connectivity texture should not be considered.

Note that the spring forces will be calculated twice (with different sign),
from each particle connected to it. We have chosen not to take advantage
of the fact that gij = −gij from equation (8.2), as it would require a second
pass. Additional information would also have to be given to each fragment
to indicate the sign of the force of a given spring

8.5.2 A Spring-Mass System with Implicit Connections

A potentially limiting factor of the approach of explicit connections is the
intense use of texture lookups to retrieve the positions of neighbor particles.
What if the texture coordinates of neighbors could be given directly as in-

94 CHAPTER 8. SPRING-MASS ON THE GPU

h

w

d

s1

s1 s2

sd

…

… sd-1

h

w

Figure 8.3: The flat 3D-texture approach. The 3D volume of voxels is
mapped to a 2D texture by laying out each of the d slices of size h · w
in the 2D texture one after another. The slices are padded with elements
containing unique alpha values of zero to represent the volume borders.

Figure 8.4: The position-texture of a 42.745 particle pig heart. White areas
are grid points not associated with particles.

put to the fragment program to enable a single texture lookup to retrieve
neighbor positions? In the method presented in this section, the texture co-
ordinates needed to lookup neighboring particles are given directly as input
to the fragment program from the output of the vertex program. To avoid
that the vertex processor becomes a bottleneck by rendering individual frag-
ments as geometry, we again conceptually invoke the fragment computation
with a single quad covering the position-texture. Texture coordinates are
specified for each vertex and interpolated automatically by the rasterizer
before being received as input in the fragment programs. This means that
particles must be connected in such a way that their neighbors can be fetched
from per vertex interpolated texture-coordinates. That is, particles should
be connected in a fixed pattern. We use a 3D grid as depicted in figure 8.2
to construct a Spring-Mass system with eighteen springs constraining axis
aligned changes as well as shearing.

The grid must be mapped to the two-dimensional position-texture to
use the proposed approach. This is achieved through a derivation of the flat
3D-texture approach [90], see figure 8.3 and an example in figure 8.4.

The quad rendered to invoke fragment computation is given eighteen tex-
ture coordinates that are offset a fixed amount from the texture coordinates
identifying the particle, see figure 8.5. Neighbors within a slice are addressed
by offsetting the fragment position by ±1 along the width or height of the
texture. Neighbors between slices are addressed by furthermore offsetting
with either w + 1 or −(w + 1) to reach a neighbor in the previous and next

8.5. SPRING CONNECTIONS AND FORCE COMPUTATION 95

a) b)

Figure 8.5: Vertex texture coordinates for neighbor positions. For clarity
we will only show two of the 18 possible texture coordinates. a) depicts
the five quads rendered to ensure correct wrapping. The texture coordinate
pointing to the neighbor directly below in depth is shown for the top-left
vertex. b) shows the four texture coordinates given with all quads for the
right neighbor.

slice respectively. In this way each fragment program knows the texture
coordinates and hence the positions of its neighbors by one texture lookup
each. Particles on the border of a slice are not intended to be connected
to all their fragment-neighbors. To alleviate this problem we pad the slices
with inactive particles that we do not seek to process - notice the padding
in figure 8.3. We define inactive particle fragments to have an alpha value
of zero. This value is detected in the fragment program, and the calculation
is skipped for the associated springs. The 18 texture locations of neighbors
plus the location of the particle itself are given through 8 texture-coordinates
(with 8 · 4 = 32 values). A simple mapping would only give us 16 texture-
coordinates when we need 19 (including a texture coordinate for the particle
itself). Since some of the neighbors have identical components (e.g. right
neighbor and bottom right neighbor) we can reuse identical components.

Instead of the conceptual model of rendering only one quad to invoke
full fragment computation, it is necessary to render five quads with texture-
coordinates constructed to take into account the border-cases of the flat
3D-texture approach by wrapping the addresses for neighbors, as illustrated
in figure 8.5.

By this implicit connectivity, gij in equation (8.2) can be determined
using only 1 texture lookup per neighbor instead of 2 per neighbor as was
the case in the explicit method. Furthermore we have fixed the possible rest
lengths to all neighbors to either 1 or

√
2. We can hereby simplify the force

computation somewhat if we assume all stiffness coefficients kij to be equal

96 CHAPTER 8. SPRING-MASS ON THE GPU

to the constant k:

∑

j

gij =
∑

j

1

2
kij (lij − ‖xi − xj‖)

xi − xj

‖xi − xj‖
=

1

2
k

∑

j∈D1

xi − xj

‖xi − xj‖
−

∑

j∈D1

xi − xj

 (8.4)

+

√
2

∑

j∈D2

xi − xj

‖xi − xj‖
−

∑

j∈D2

xi − xj

D1is the set of neighbor particles with distance 1 and D2 is the set of neigh-
bor particle with distance

√
2. Using this expression as the basis for the

fragment programs saves instructions. Equally important this gives us a
sum of unit-vectors, which we can use later to calculate normals after defor-
mation in chapter 9. This expression transfers to the cg code in algorithm
1.

As in [86] the geometry is connected in a regular grid. Unlike [86] how-
ever, we operate on a 3D grid. The grid must furthermore approximate an
arbitrary geometry. Hence, it is necessary to exclude some of the particles
in the grid. Even though we can conditionally skip calculation of these par-
ticles in the fragment programs, there is some overhead involved in doing
so. To overcome this problem we initially fuse an image of the model in the
OpenGL depth buffer once, and set up a depth-buffer test to fully eliminate
processing inactive particles. Conceptually we carve out the morphology in
the grid of particles. Grid points are active particles in the simulation if they
are inside the myocardium or a vessel wall; otherwise they are discarded by
the depth-buffer based cull. See figure8.4 for an example.

8.6 GPU Spring-Mass Performance Results

This section presents performance measures of the described GPU Spring-
Mass systems and compares them to a CPU implementation. The GPU
based Spring-Mass systems were implemented in CG, OpenGL arbfp1 (in-
cluding fragment_program2 features) as well as Visual Studio C++. The
CPU Spring-Mass system was implemented in Visual Studio C++ and com-
piled with all optimization flags set and optimized for speed. The CPU
Spring-Mass system is a direct port of the GPU implementation. The tests
were run on a Pentium IV 3GHz machine with a Gainward CoolFX Ul-
tra/2600 (GeForce 6800 Ultra) graphics card. Performance results for dif-
ferent sizes of GPU Spring-Mass systems in comparison with the CPU im-
plementation are reported in 8.7 and 8.1. The original articles [4, 5] included
an example dataset of 42.745 particles running in real-time. Although the

8.6. GPU SPRING-MASS PERFORMANCE RESULTS 97

Algorithm 1 Partial cg code for force-calculation according to 8.4.
float3 calculateAcceleration

(uniform sampler2D posTex,

float3 pos,

float2 texCoord,

...

float4 texCoord7,

float stiffness,

out float3 sumOfUnitVectors)

{

... initialisation of variables to 0
// Neighbors with rest length 1

NPos = tex2D(posTex, float2(texCoord.x,texCoord1.y));

if (NPos.w!=0.0)

{

float3 d = pos.xyz-NPos.xyz;

sumOfDifferenceVectors += (d);

sumOfUnitVectors += normalize(d);

}

... continues for all 6 neighbors of rest-length 1
float constraintDist = 1;

acc = acc + stiffness * (constraintDist *

sumOfUnitVectors - sumOfDifferenceVectors);

normal += sumOfUnitVectors;

// Neighbors with rest length
√

2
sumOfUnitVectors = float3(0,0,0);

sumOfDifferenceVectors = float3(0,0,0);

NPos = tex2D(posTex, texCoord4.xy);

if (NPos.w!=0.0)

{

float3 d = pos.xyz-NPos.xyz;

sumOfDifferenceVectors += (d);

sumOfUnitVectors += normalize(d);

}

... continues for all 12 neighbors of rest-length
√

2

normal = normal + sumOfUnitVectors;

constraintDist =
√

2
acc = acc + stiffness*(constraintDist*

sumOfUnitVectors - sumOfDifferenceVectors);

return acc;

}

98 CHAPTER 8. SPRING-MASS ON THE GPU

(a) (b)

Figure 8.6: A Pig heart consisting of 42.745 particles in a regular grid recon-
structed from a CT data set. a) original geometry b) deformed by grabbing.
Notice that this is a very early screen-shot from the simulator.

Table 8.1: Performance comparison for the CPU, Explicit Connections GPU
and Implicit Connections GPU. In the 2nd , 3rd and 4th column we present
iterations per second. GPU/CPU columns present the GPU speedup in
comparison to the CPU. The GPU was a GeForce 6800 Ultra and the CPU
a 3ghz Pentium IV

Method

Nodes CPU
Implicit

GPU

Implicit
GPU /
CPU

GPU
Explicit
GPU /
CPU

10.000 45,8 839,8 18,7 457,1 10,2

20.000 20,2 476,9 23,6 234,4 11,6

40.000 9,9 264,6 26,9 121,0 12,3

50.000 7,8 218,0 28,1 99,0 12,7

100.000 3,3 104,1 31,4 48,5 14,6

visual quality is not representative of the current simulator we show the
figure as a reference, see figure 8.6.

8.7 Interaction

To interact with the simulation the system can use either two magnetically
tracked Polhemus Fastrak styluses with two buttons each or two Phantom
Omni devices with haptic feedback (See figure 8.8). Each stylus provides
position and orientation of the instruments in space. We support three
modes of interaction; probing, grabbing and cutting. The main issue in all
these interaction methods is to avoid communication between the CPU and
GPU every frame, as this will introduce a bottleneck in the application.

8.7. INTERACTION 99

GPU/CPU comparison

0

200

400

600

800

1000

1200

1400

2500 10000 17500 25000 32500 40000 47500

number of nodes

s
im

u
la
ti
o
n
it
e
ra
ti
o
n
s
/
s
e
c
.

G PU implicit

GPU explicit

CPU

Figure 8.7: The GPU Spring-Mass systems in comparison to a CPU im-
plementation. The GPU was a GeForce 6800 Ultra and the CPU a 3ghz
Pentium IV

Figure 8.8: This picture shows the current simulation setup with Phantom
Omni feedback devices and the virtual environment for training surgical
procedure in congenital cardiac surgery.

100 CHAPTER 8. SPRING-MASS ON THE GPU

8.7.1 Probing

When probing, all particles seek to remove themselves from the volume of
space covered by the interaction instrument [135]. The fragment program
calculates intersection and intersection response. In papers [4, 5] we used
the following method; every fragment simply checked if the particle were
inside a globally defined set of spheres. If this was the case the particle
were projected to the sphere surface. We found that this was a major source
of the flip-over problem discussed in section 5.3. A concrete result of the
flip-over issue is that the visualization presented in chapter 9 depends on
a well defined topology. In short, a group of three nodes span a space in
which vertices of the surface are expressed. If a flip-over occurs with these
three nodes, the space spanned will also flip and any vectors or vertices ex-
pressed in it will flip as well. That is, we will see the back-face instead of
the front face resulting in black areas. The problem is that the repeated
absolute positioning of particles onto the surface of the sphere could very
easily create problems in which the implicit volume of the basic elements
of figure 8.2 would be inverted or otherwise invalidated. One issue in the
problem is that we do not take the connectivity of springs into account, and
that we have no forces depending explicitly on the volume. We could intro-
duce these volume-forces, but propose a more restrictive method to better
guarantee that the before-mentioned problems do not occur. Our solution
is to restrict the movement of particles that have a risk of invalidating the
volume requirement. We define a polyhedron of the closest six neighbors,
shrink this polyhedra by a factor and finally restrict the movement of par-
ticles to this small polyhedra. See figure 8.9. This restriction of movements
is very conservative and we consequently only perform it on nodes within a
certain distance to the probing instrument.

8.7.2 Grabbing

All particles have a state indicating whether they are grabbed or not. When
the grab-button is pressed we perform an intersection check on all particles
using a bounding sphere of the grabbing tool. If a particle is intersected
the state of the particle is changed to grabbed. When particles are grabbed,
their position will be set relative to the center of the grabbing device for
as long as the grab-button is active. We have chosen to resolve the grab
state of particles on the CPU. When the grab-button is pressed we do a
read-back of the position texture once. The CPU knows which particles
are grabbed and what their positions should be relative to the interaction
device. This information is rendered back into the position texture after
the integration, overwriting that calculated position, and before cycling of
the PBuffers. When the grab-button is released the additional rendering
is no longer necessary. Since the position texture is only read back at the

8.7. INTERACTION 101

a) b) c) d)

Figure 8.9: Restriction of movement of particles. a) for each particle (red)
we check for intersection with each of the triangles spanned by the closest
six (blue) neighbors. b) illustrated in 2D, the red particle seen in isolation is
allowed to move within the red area defined by the four neighbors (in 2D). c)
since all particles are updated simultaneously the green particles connected
to the red particle may also move. We consequently restrict the movement
of all particles to a more narrow volume (blue) than the original defined by
neighboring particles. d) in this simplified 2D case, the original invariant of
b) is fulfilled if both green particles and the red particles stay within their
blue narrow volume, i.e.. do not cross the dotted line so that the volume is
not well defined.

beginning of a grab, there is no noticeable slowdown in the simulation. The
final result is that the grabbed particles move relative to the interaction
device and neighboring particles will follow due to the springs connecting
these particles. It is possible to handle grabbing entirely on the GPU. This
leads to more fragment operations per simulation iteration however, and
results in lower simulation rates.

For the simulation to behave realistically, a grab needs to include a
relatively large set of particles. If a grab is made across an incision, the
user will not be able to open up the incision with that grab. To alleviate
that issue, we include only particles in the grab that can be accessed by
following spring-connections to a depth corresponding to the radius of the
grab-sphere.

8.7.3 Cutting

A cutting action defines an incision in the spring-particle connections, re-
moving or altering connections so that there are no structural constraints
across the incision [134]. The geometry should furthermore follow the inci-
sion as closely as possible. Since the surface faces are not directly represented
in the fragment programs for the Spring-Mass computations, updating the
surface geometry is done on the CPU with up-to-date nodal positions. Be-
fore each cutting procedure the position texture is read back to the CPU
once. Collision detection can be done on the CPU or GPU [47] but collision
response in the form of structural changes is handled on the CPU. When

102 CHAPTER 8. SPRING-MASS ON THE GPU

Implicit cutting

0

10

20

30

40

50

0 5 10 15 20
Percentage of particles in cut

F
ra

m
es

 /
se

c.

Figure 8.10: For the implicit method we proposed a cutting scheme that
rendered additional quads to exclude individual springs. This graph shows
the relationship between the size of the cut as percentage of the whole geom-
etry of 42.745 particles and the frame rate. The frame-rate is for rendering
the pig heart morphology (figure 8.6) with four iterations of simulation per
visualization on a GeForce6800 Ultra

using explicit connections, cutting is simply a transfer of CPU based cut-
ting schemes [146] since we represent both particles and springs. Structural
changes can be propagated to the GPU by simply writing into the position
texture and connectivity texture. When using implicit connections we have
no representation of springs and we cannot insert particles between other
particles. A simple cutting scheme would erase particles and hereby the
springs connecting the particle to its neighbors. This can be accomplished
by writing an alpha value of zero into the fragments corresponding to the
particles we wish to erase. This will mark the fragments as inactive parti-
cles. The incision would then be at least as wide as the length of two relaxed
springs. We propose instead a method of cutting the implicit model that
improves the granularity; we erase individual springs. To erase a spring we
render a special fragment-sized quad at the position of the two associated
fragments. The fragment program is unchanged, but we erase springs by
giving the value of zero for those texture coordinates (out of the 18) related
to erased springs. A zero texture coordinate results in reading the texture
padding and consequently indicates that there is no connection. This ap-
proach of cutting results in a growing number of quads rendered proportional
to the number of erased springs. In most simulations the number of quads
will fortunately not grow excessively.

8.7.4 Interaction Results

Performance results for the implicit GPU cutting are reported in figure 8.10
showing the decline in performance when cuts are made in the simulation.

8.8. DISCUSSION AND CONCLUSION OF GPU SPRING-MASS 103

8.7.5 Discussion and Conclusion of Interaction

For this kind of surgical simulation the growing number of quads rendered
(figure 8.10) to support incisions is a minor performance issue since using
few and small incisions is an important characteristic of surgery.

The granularity of cuts in the implicit method is not a big problem for
the incisions in the heart, since these are large compared to the detail of the
Spring-Mass system. The interaction through magnetically tracked styluses
gives 3D position and rotation but lacks any haptic feedback which would
help the surgeons in judging forces used in the interaction. I refer to part II
for a more use-specific discussion.

8.8 Discussion and Conclusion of GPU Spring-Mass

As can be seen from figure 8.1 and figure 8.7, the GPU clearly outperforms
the CPU in computation of a Spring-Mass system. Comparing the implicit
GPU method to the CPU implementation we have a speedup of up to a factor
30. The GPU achieves this computational speedup since we successfully
expressed the Spring-Mass algorithm in computational resources available
in the modern GPU. One aspect of this is the use of the very specialized
fragment processor, but the biggest impact on performance is clearly that the
type of computation presented here is very well suited to the cache-scheme
of the GPU, as discussed in section 7.2. The GPU method with explicit
connections runs at about half the speed of the implicit method, because of
the double amount of texture-lookups. There is clearly a trade-off between
speed and the generality of connectivity in the Spring-Mass system.

With the increased number of iterations available per second, we can
achieve faster convergence when simulating physically based deformable ge-
ometry. We can iterate several times in the simulation loop before render-
ing the result to the screen, still in real-time. Furthermore we can achieve
greater stability and precision of the numerical methods by using smaller
time-steps than previously. Finally, the added computational power could
also be used to process larger geometries with added degree of detail, en-
abling more elaborate surgical simulations.

If we consider a standard Spring-Mass implementation, there are many
improvements that can accelerate the simulation on the CPU. These might,
however, not be easily ported to the GPU. Hence, the presented speedup
is not to be interpreted as a speedup compared to the fastest CPU imple-
mentation available. If we consider the LR-SpringMass model [2] for CPU
acceleration presented in section 5.4, that method is not easily implemented
on the GPU. In [2] we iterate through particles in a sequence determined by
interaction and thereby accelerate the global convergence of the integration.
On the GPU we have no control over the sequence of fragment processing.
Likewise, iterating over all springs to perform relaxation poses a problem

104 CHAPTER 8. SPRING-MASS ON THE GPU

because each fragment can only output one particle position, and we must
work in a stream paradigm where input and output buffers cannot be the
same.

In the past decade, GPU performance growth has exceeded that of the
CPU [43]. This is expected to extrapolate well into the future. Hence the
acceleration factor is expected to grow correspondingly.

8.9 Future Work

Future work in a technical perspective should include studies on how the
GPU and CPU can be made to work more efficiently together. In the pre-
sented solution, the CPU is not utilized efficiently because the transfer of
data from the GPU to the CPU becomes a bottleneck. It is simply too costly
to let the CPU and GPU communicate beyond a trivial amount. With the
PCI-Express standard for graphics cards the communication speed is ex-
pected to grow considerably and should be equally fast in both directions.
We must then consider what kind of processing is suitable for the GPU and
CPU, and allow them to work jointly on the problems at hand.

In cases where the spring-mass model is not considered adequate, other
physically based models of deformation could be ported to the GPU follow-
ing the principles of this progress report. The explicit FEM model from
section 5.1.5 could be implemented as a dynamic simulation in much the
same way as the spring mass model, but requiring a larger number of neigh-
bor lookups as well as neighbor dependent stiffness coefficients.

It would also be very interesting to look into the possibilities of automatic
level of detail in the spring-mass simulation as well as the visualization
using the hardware accelerated linear interpolation of texture lookups. Such
a representation would probably include some hierarchical representation
of vertices and nodes on the GPU, and could possibly also be used as an
acceleration structure for intersection tests without the transfer of data to
the CPU.

As a next step in the range of interaction modalities, future research
will investigate how the GPU implementation of the spring-mass algorithm
can support suturing. The difficulties herein are especially evident in the
implicit GPU implementation because connectivity is implicitly defined and
suturing seeks to explicitly connect parts of the tissue.

Chapter 9

Decoupling Visualization and
Simulation

This chapter presents the visualization techniques developed to show a de-
tailed model of the virtual heart. The chapter is based on the paper [6] with
the addition of some source code and better quality figures.

9.1 Introduction

Recently GPUs have become programmable to a degree that makes them
useful for general-purpose computation [43]. Specifically, the computation of
physically based systems has been successfully implemented [91, 5, 23]. The
GPU is designed to work with textures, and the discretization of the physical
equations often takes advantage of this by restricting nodes to a regular grid.
Consequently, attention must be put into visualizing the results in detail,
smoothly and continuously.

In this chapter we focus on the problem of visualizing a deformable
surface defined by a Spring-Mass system solved on the GPU. In chapter
8 we presented methods for GPU accelerated computation of Spring-Mass
based elastic deformation. In particular, a grid-based arrangement of mass-
points gave a speedup of a factor of 20 to 30 compared to a similar CPU
implementation.

We present three generally applicable methods for the visualization of a
surface deformed by a set of nodal positions. The methods are not directly
dependent on the calculation of the physical system and can be applied to
other physical systems or methods of animation. First, a simple one-to-one
mapping (with approximate normals) is defined between visualized vertices
and mass-points. Secondly, we present two methods of deforming and vi-
sualizing a detailed surface based on the deformation of a relatively low
number of nodes. The two methods both define a dynamically changing
orthonormal vector basis for all nodes on the surface of the simulated volu-

105

106 CHAPTER 9. DECOUPLING VISUALIZATION AND SIM.

Figure 9.1: A physical simulation on the GPU calculates the deformation of
a grid of 20.000 particles representing the shape of a heart. A heart surface
with 50.000 faces is mapped to the grid. As a result the highly detailed
surface can be deformed in real-time based on the deformation of the simpler
grid. In the close-up, the grid is shown on top of shading illustrating the
dynamically calculated normals.

9.1. INTRODUCTION 107

(a)

(b) (c)

Figure 9.2: A close-up of the grid-based Spring-Mass simulation showing
the springs of the physics system in b). The visualization is done with one-
to-one mapping between nodes and vertices in a) and offsets from nodes to
vertices in c). An orthogonal projection matrix has been used to clearly
show the grid.

108 CHAPTER 9. DECOUPLING VISUALIZATION AND SIM.

metric grid. The surface-vertices to be visualized are expressed in this basis
and consequently reflect the deformation of the simulated nodes. Tangent
space bases can also be expressed in the dynamically calculated bases and
enable normal-mapping of the highly detailed deforming surface geometry.
Common to all the methods presented is that we construct a detailed sur-
face mesh and render this mesh through a vertex program that defines the
mapping between vertices on the surface and nodes in the simulation.

The overall goal of our project is to simulate surgery on children with
congenital heart disease, supporting deformation as well as cutting of heart-
tissue. The detailed visualization is needed for the surgeon to accurately
recognize features of the heart. At the same time the physical system must
have a resolution that allows for real-time deformation.

9.2 Previous Work

Our simulated system can be regarded as a low-resolution geometry, based
on which we express and animate a highly-detailed geometry. Classical ap-
proaches to this problem on the CPU include bump mapping and displace-
ment mapping. Bump mapping [21] perturbs the surface normals at a per
texel level, affecting shading as if the geometry had bumps. Displacement
mapping [49] tessellates each triangle and displaces the newly generated
vertices along the normal according to an amount read from a height-map.
Displacement mapping allows for the animation of a low resolution mesh of
control points that deform the high resolution geometry accordingly.

Bump mapping can easily be implemented in fragment programs on the
GPU, but does not correct for the jagged appearance along the contour of the
mesh. While bump mapping does not in itself solve the problem of the jagged
contours, it can be combined with the presented work to visualize small-
scale surface details. GPU implementations of displacement-mapping based
on textures have been made possible through the texture lookup instruction
in vertex programs introduced in shader model 3.0. Simple one-dimensional
perturbations along the z axis of a grid of vertices have been used to visualize
a dynamic height-map [112], but the method cannot directly do displacement
mapping for an arbitrary 3D mesh.

Because of the large amount of fragment processing power available,
several authors have introduced the idea of computing per-pixel offsets from
actual geometry to a surface described by a height-map [94, 103]. These
techniques generally use a height-map with ray marching which is compu-
tationally expensive. Complex 3D meshes including curvature have further-
more been problematic because the current ray-marching techniques are not
aware of curvature, nor the mapping of height-maps to faces. Techniques
such a [189] pre-processing the intersection-tests to simplify the calculations
on the GPU and using lookups in the pre-processed data exist, but these

9.3. METHODS 109

are at the cost of extensive memory usage. For our application the memory
usage is too high. The technique furthermore requires the geometry of the
simulated system to fully enclose the surface to be visualized. That require-
ment is too restrictive for a grid based simulation visualizing incisions that
are smaller than the grid resolution.

9.3 Methods

In this chapter we use the term vertex to describe a vertex in the surface
mesh exclusively, and the terms node and nodal to describe a position in the
less detailed set of control points. When we wish to emphasize that a node-
position is based on a physical simulation we use the term particle. We start
out by briefly reviewing our GPU Spring-Mass simulation in section 9.3.1.
In section 9.3.2 we present a simple one-to-one mapping between nodes and
vertices and in section 9.3.3 we present two more general mappings from a
set of vertices to a less detailed set of nodes.

9.3.1 Grid Based Calculation of Deformation on the GPU

We briefly review the grid-based layout of particles (also called the method
of implicit connections) for the calculation of deformation on the GPU as
presented in chapter 8. The method is based on a layout of particle-positions
in a regular three-dimensional grid. Each particle is connected in a fixed pat-
tern to the 18 nearest neighbors. The grid is mapped to a 2D texture for
fragment processing, and the texture containing the current set of particle
positions is called the position-texture. In fragment programs we calculate
the forces influencing the particles and numerically integrate to obtain po-
sitions. The basic linear spring force gi with rest length lij for a node i with
position pi and neighbor positions D is calculated as:

~gi =
∑

j∈D

1

2
kij (lij − ‖pi − pj‖)

pi − pj

‖pi − pj‖
(9.1)

This expression can be optimized for fragment processing if we assume that
the spring coefficients kij are all equal to the constant k and observe that
springs arranged in the grid have rest-lengths 1 and

√
2:

~gi =
1

2
k

{

∑

j∈D1

pi − pj

‖pi − pj‖
−

∑

j∈D1

(pi − pj)+

√
2

∑

j∈D2

pi − pj

‖pi − pj‖
−

∑

j∈D2

(pi − pj)

} (9.2)

D1 is the set of neighbors with distance 1 and D2 is the set of neighbors with
distance

√
2. Besides saving instructions, this expression includes a sum of

unit-vectors, which is used to find approximate normals after deformation.

110 CHAPTER 9. DECOUPLING VISUALIZATION AND SIM.

a) b)

Figure 9.3: A 2D example of a normal calculated on the basis of unit-vectors
from neighbors. a) the original geometry. b) the deformed geometry. The
normalized vectors (grey) are added to form the approximate normal (black).

To visualize the set of nodes in real-time based on the deformation of
nodes we cannot simply read back the node positions to the CPU and render
vertex positions accordingly, as this would be a major performance bottle-
neck. Instead we utilize a new feature in the shader model 3.0 design; texture
lookups in vertex programs. We use vertex programs to express the calcula-
tions involved in mapping vertices to nodes. Through vertex texture fetches
we access only nodes that are part of the surface of the simulation-mesh. The
geometry specified to the 3D API to visualize the current simulation-step is a
static mesh, allowing caching on the graphics card, while the vertex-program
can retrieve up-to-date nodal positions from the position-texture.

9.3.2 One-to-One Mapping and Approximating Normals

A limited visualization method is presented in this subsection to motivate
the later generalization. This method was presented in the papers on Spring-
Mass computation on the GPU [4, 5] and repeated in the paper on which
this chapter is based as a motivation for the decoupling of simulation and
visualization. The method is based on a simple one-to-one mapping between
the position of a vertex and a surface node, simply transferring the position
of the node to the corresponding vertex-position. To render the model we
initially set up a display-list, which renders the surface geometry at its orig-
inal rest position. We pass one texture coordinate per vertex to provide the
coordinates of the corresponding node in the position texture. The vertex
program then fetches the most recent node position, performs basic trans-
formation and outputs the deformed position for further processing in the
graphics pipeline.

An important issue in this visualization is the calculation of surface nor-
mals used for shading of the surface. In a conventional CPU application,
one would often approximate vertex normals by averaging the adjacent face
normals. Face normals are found by reading the positions of nodes making
up the face and calculating the normal of the plane. Implemented on the

9.3. METHODS 111

Algorithm 2 Pack and Unpack Cg programs using the 23 bits mantissa
divided into 7,8 and 8 bit for x,y and z components.

float pack(float3 a) // pack into 23 bits mantissa 7,8,8

{

a = normalize(a);

float first8Bit = floor(((a.x+1)*0.5) * 255);

float second8Bit = floor(((a.y+1)*0.5) * 255);

float third7Bit = floor(((a.z+1)*0.5) * 127);

//2^8 and (2^8 * 2^8)

return first8Bit + second8Bit*256 + third7Bit*65536;

}

float3 unpack(float a)

{

float first8Bit; float second8Bit; float third7Bit;

third7Bit = floor(a/65536.0);

a = a - third7Bit*65536;

second8Bit = floor(a/256.0);

a = a - second8Bit*256; first8Bit = floor(a);

float3 ret = float3(first8Bit/255,

second8Bit/255,

third7Bit/127);

return (ret*2.0)-1;

}

GPU this would result in an excessive amount of texture lookups. It is not
an option either to read back the position-texture each frame due to per-
formance reasons; the calculation of normals must take place on the GPU.
We approximate surface normals by the normalized sum of the unit vectors
pointing from neighbors to the particle in question, an example is seen in
figure 9.3:

~Na(i) = normalize(
∑

j∈D

normalize(pi − pj)) (9.3)

Since we already computed the sum of the unit vectors in the force calcu-
lations in equation (9.2), we only need to normalize this vector and save it.
This approximation gives us well behaving normals almost for free. We pack
the 3-tuple normal into the 32 bit alpha channel of the fragment representing
the particle-position, see algorithm 2.

The normal is read and unpacked by the visualization vertex program
and send to a fragment program for per pixel lightning. The one-to-one

112 CHAPTER 9. DECOUPLING VISUALIZATION AND SIM.

Figure 9.4: A series of screen-shoots showing cutting (section 8.7.3) in com-
bination with the one-to-one mapping. Notice the jagged and spring-wide
incisions.

mapping has some severe limitations since it is based directly on the set of
simulated nodes. Basically the visualized result has a very jagged look, see
figure 9.2 a) and b). Furthermore, cutting the simulation grid as proposed
in section 8.7.3 in combination with the one-to-one mapping as proposed in
this section results in very large and jagged incisions, see figure 9.4. These
limitation are removed by the remaining work in this chapter, see figure 9.1
and figure 9.2 c).

9.3.3 Mapping using the Triangle Basis

In the previous section we presented a one-to-one mapping between a sur-
face vertex and a node with a direct transfer of nodal positions to vertex
positions. For shading, an approximate normal was found based on the force
calculation. The technique presented in this section enables a "many-to-one"
mapping from vertices to nodes through an offset vector. The goal of this
technique is to deform highly detailed geometry based on the deformation
of less detailed geometry. The less detailed geometry can be as simple as a
set of interconnected points.

9.3. METHODS 113

p1
p2

p3

r

v

Figure 9.5: a) For a high-resolution set of vertices and a low-resolution set
of nodes we define for each triangle (p1,p2,p3) and corresponding vertex v

the reference point r and offset vector ~o = v − r.

Defining an offset in the triangle basis

For each vertex v in the highly detailed surface we associate a triangle of
three nodal positions (p1,p2,p3), which control the position of the vertex,
see figure 9.5. The triangle defines a space within which we will represent
vertex positions and vectors from the highly detailed model. We need the
positions of the vertices to be based on the location, rotation and scaling of
the triangle bases. First we define a reference point r for each vertex. The
reference point is chosen as a projection of the vertex onto the triangle base.
The reference point will be represented by weights (w1, w2, w3) of the nodal
positions:

3
∑

i=1

piwi = r

3
∑

i=1

wi = 1

(9.4)

This definition allows the reference points of the vertices to adjust as the
triangle scales.

The vertex v can be expressed as an offset vector ~o from the reference
point r:

v = r + ~o. (9.5)

This vector is expressed in object space. As a next step, we express the offset
vector in a vector basis formed by the location of nodes in the associated
triangle. Ideally, the offset vector should be affected by both rotation and
scaling of the triangle. We simplify the definition of the offset however,
taking into account only the rotation of the associated triangle. Depending
on the chosen projection of vertices onto triangles, the offset vector will be

114 CHAPTER 9. DECOUPLING VISUALIZATION AND SIM.

a) b) c)

Figure 9.6: Visual artifacts can occur when vertices are rotated based on
per triangle information only. For simplicity we exemplify in 2D. a) is the
original configuration of nodes (boxes) and vertices (dotted line and spheres).
b) illustrates the problem of two vertices that are very close in the original
configuration but are disproportionally far away from each other when the
deformation occurs. c) illustrates how the vertices can intersect the mesh.

close to the normal of the triangle, in which case scaling in the triangle plane
has little or no effect. Per triangle we define the orthonormal basis (~T , ~N ,
~B) based on (p1,p2,p3) as the triangle basis:

~Bt = normalize(p3 − p1)
~T = normalize(p2 − p1)
~N = ~T × ~Bt

~B = ~N × ~T

(9.6)

The offset vector ~ot in the triangle basis is calculated as:

~ot =
(

~o · ~T , ~o · ~N,~o · ~B
)

(9.7)

Curvature across triangles

In the previous section the triangle basis was defined as being constant
across each triangle. Consequently, in some cases deforming a mesh of tri-
angles can result in visual artifacts between vertices that are associated to
different triangles, see figure 9.6 and figure 9.8 a). The deformation of ver-
tices associated to different triangles is not in any way inter-dependent even
though they might be very close in the original configuration in world space.
A better solution is to interpolate the orthonormal bases across the trian-
gles, see figure 9.7. This means that the orthonormal basis should be defined
at each node and depend on the orientation of all incident triangles. This
approximates the curvature of the simulated shape more closely, not only

9.3. METHODS 115

a) b) c)

Figure 9.7: A correct curvature when vertices are rotated based on interpo-
lated information. For simplicity we exemplify in 2D. The configuration of
nodes are as in figure 9.6.

the orientation of each triangle in isolation. The difference is comparable to
the difference between flat and Gouraud shading. A naive implementation
would require a large amount of expensive vertex texture fetches, calculat-
ing the triangle bases of all surrounding triangles. Instead we address this
issue by remembering that we already have approximate normals per node
(section 9.3.2). We do not have a tangent and bi-tangent per triangle node

though. Our solution is to assume that the approximate normal ~Na(i) and
the normal ~N (equation (9.6)) are close enough that we can use the per-
triangle tangent ~T and bi-tangent ~B to construct a per-vertex tangent and
bi-tangent based on the approximate normal. To compute the interpolated
normal for a vertex associated to a given triangle of nodes (p1,p2,p3) we
use the weights (w1, w2, w3). The interpolated triangle basis (~Tc, ~Nc, ~Bc) can
be expressed as:

~Nc =
∑3

i=1 wi
~Na(i)

~Bc = ~Nc × ~T
~Tc = ~Bc × ~Nc

(9.8)

Any vertex on the highly detailed geometry can now be expressed in the
interpolated triangle basis as in equation (9.7).

Implementation

The entire highly detailed mesh is sent to the GPU for visualization through
OpenGL as vertices arranged in a mesh. For all vertices we pre-calculate the
nodal weights (to express the reference point) and the offset in the triangle
basis on the CPU once. This information is given as vertex attributes to
the vertex program. The nodal positions reside in texture memory; conse-
quently we give three texture-coordinates as additional per-vertex attributes

116 CHAPTER 9. DECOUPLING VISUALIZATION AND SIM.

Figure 9.8: Visualization of the deformation of a dragon [175]. The left
column of images shows the deformation without correction for curvature
and the right column of images shows the deformation with correction for
curvature. The top row of images are without any deformation while the
middle row and bottom row show a push and pull of a node respectively.
The shading of the dragon is a combination of normal-mapping and the color
representing the dynamic normal.

9.3. METHODS 117

to resolve the current positions (p′

1,p
′

2,p
′

3).

In the vertex program three texture lookups are used to retrieve the
current nodal positions. Finding the vertex position in the vertex program
is equivalent to the construction of weights (equation (9.4)), triangle-basis
(equation (9.6) or (9.8)), and offset-vector (equation (9.7)) on the CPU. On
the GPU these calculations are done "backwards" compared to the CPU;
resulting in the current vertex point v′ based on the configuration of the
current positions (p′

1,p
′

2,p
′

3):

lookup(p′

1,p
′

2,p
′

3)

r′ =
∑3

i p′

iwi

~Bt = normalize(p′

3 − p′

1)
~T ′ = normalize(p′

2 − p′

1)
~N ′ = ~T ′ × ~Bt

~B′ = ~N ′ × ~T ′

unpack(~N ′
a(1),

~N ′
a(2),

~N ′
a(3))

~N ′
c =

∑3
i=1 wi

~N ′
a(i)

~B′
c = ~N ′

c × ~T ′

~T ′
c = ~B′

c × ~N ′
c

~o′ =

{

(~ot
x · ~T ′

c,
~ot
y · ~N ′

c,
~ot
z · ~B′

c) if interpolated

(~ot
x · ~T ′, ~ot

y · ~N ′, ~ot
z · ~B′) if constant

v′ = ~o′ + r′

(9.9)

Shading

Simple Gouraud shading of the highly detailed mesh depends on a per vertex
normal. An optimal normal for shading is possibly different from the normal
of the triangle basis. Consequently a pre-calculated normal for the initial
mesh configuration is expressed in the triangle basis hereby reflecting the
deformation of the nodes. Tangent-space based shading such as normal
mapping or parallax mapping is possible if we express vectors defining the
tangent space in the triangle basis. These additional vectors are given as
per-vertex attributes.

9.3.4 Results

The fragment and vertex programs have been implemented on a GeForce
6800 Ultra graphics card. For shading of all the illustrated models we have
used normal mapping.

118 CHAPTER 9. DECOUPLING VISUALIZATION AND SIM.

Figure 9.9: This figure shows the result of making an incision into a high-
resolution surface controlled by a lower resolution simulation grid.

The heart model in figure 9.1 has approximately 50.000 faces. The sim-
ulation grid consists of 20.000 nodes. The triangle-basis based visualization
with correction for curvature can be visualized at 150 fps. Including 15
simulation steps per visualized frame results in 25 fps. This amounts to
6.67 milliseconds per visualization step and 2.22 milliseconds per simulation
step with our current implementation. Without curvature correction each
visualization of a frame takes 5.26 milliseconds (190 fps).

As a test for the mapping of a high resolution surface onto a very low
resolution set of nodes we used the dragon model [175] consisting of 9.971
faces controlled by just 18 nodes. In figure 9.8 the dragon is visualized with
the two variations of triangle-basis based mapping from section 9.3.3.

The visual difference between the one-to-one mapping of node positions
to vertex positions and the triangle-basis based mapping with offsets to
vertex positions can be inspected in figure 9.2. Comparing the incisions in
figure 9.9 using the triangle-basis based mapping and figure 9.4 using the
one-to-one mapping a clear difference in resolution of the cut is evident.
The size of the cut into the simulation grid is of comparable size in the two
models, but is not visible in figure 9.9.

9.3. METHODS 119

9.3.5 Discussion and Conclusion

We use the GPU hardware for both visualization and calculation of defor-
mation. It is important to realize that the speed of both simulation and the
visualization of the Spring-Mass system is faster than a conventional CPU
implementation. The GPU implementation of the Spring-Mass system with-
out visualization is 20 to 30 times faster than a similar CPU implementation
[4, 6, 5]. Secondly, the GPU can cache the highly detailed surface for vi-
sualization in the case of the GPU based simulation because the definition
of vertex attributes does not change. A CPU implementation of a Spring-
Mass system cannot use this technique because new vertex positions are
calculated every frame, and these need to be sent to the GPU.

The visualization methods presented have various tradeoffs that must be
considered in choosing which visualization technique to use. Using triangle-
basis based mapping, as presented in section 9.3.3, allows us to decouple
visualization and simulation. This allows e.g. visualization of higher resolu-
tion or smoother appearance than the set of simulation nodes represents, see
figure 9.2. If this is not necessary, the simpler one-to-one mapping can be
used instead. If tangent-space based shading is to be used, e.g. for normal
mapping, the one-to-one mapping does no directly support this since only
an approximate normal is available. In such cases the triangle-basis based
mapping is useful even if an offset vector is not needed.

The triangle-basis based mapping can be simplified somewhat if we as-
sume that the offset is always along the dynamically calculated normal. In
that case we do not need to create the triangle basis to express the offset
vector. We still need to perform three vertex texture-lookups to interpolate
the approximate normals though. The construction of the triangle basis is
still necessary if we wish express other vectors in the deforming space defined
by the triangle - e.g. to use normal mapping.

The approximate normal ~Na (see equation (9.3)) depends on certain
properties of the nodes. The method is most effective if the nodes are ar-
ranged in a regular grid, since this guarantees that the neighbors are evenly
distributed for calculation of the approximate normal. Very important, there
must exist a neighbor that adds to the approximate normal in the direction
of the desired surface normal. A thin cloth simulation would not provide
correct approximate normals since nodes are only connected in two dimen-
sions. There is no additional neighbor in the third dimension to force the
approximate normals to point outwards from the cloth. In the surgical sim-
ulator this means that we cannot use the current approximate normals at
parts of the organ with just one node depth. The triangle-basis based map-
ping that corrects for curvature through the approximate normals naturally
has the same dependence on the property of nodes. The triangle-basis based
mapping with a constant triangle basis across triangles can be used instead
to visualize the geometry in these cases. The heart model in figure 9.1 is

120 CHAPTER 9. DECOUPLING VISUALIZATION AND SIM.

rendered with the triangle-basis based mapping without correction for cur-
vature because parts of the blood-vessels are simulated as "one node thin"
sheets.

If the offset vector in triangle-basis based mapping is sufficiently short
compared to the relative resolution of the set of nodes or if the reference
point is close to a node, we can leave out correction for curvature without
compromising the visual appearance. In the case of the heart presented in
figure 9.1 the correction for curvature can be left out, but in the case of the
dragon in figure 9.8 the difference is very evident.

9.3.6 Future Work

It would be interesting to look into the possibilities of an automatic level
of detail (LOD) in the Spring-Mass simulation coupled with the triangle-
basis based visualization. This would enable a seamless change between
resolutions of simulation because each level of the LOD can be mapped to
the same high-resolution surface. Dynamic LOD could be implemented by
exploiting hardware accelerated linear interpolation of texture lookups. Such
a representation would probably include some hierarchical representation
of vertices and nodes on the GPU, and could possibly also be used as an
acceleration structure for intersection tests without the transfer of data to
the CPU.

In cases when the triangle-basis based mapping with correction for cur-
vature is the preferred method of visualization but the approximate normal
is not well defined for all nodes, the two methods could be combined. In
pre-processing on the CPU we could identify the problematic nodes and use
the mapping without correction for curvature for these vertices only. The
choice of method could be included as a per-vertex attribute to let the vertex
program choose between the two methods on a per-vertex basis.

In a normal utilization of the graphics pipeline for drawing geometry,
fragment processing is conserved through depth-buffer culling. In future
work we will look into removing part of the potentially large amounts of
computation done for vertices that are hidden by other geometry. In ver-
tex programs we have no equivalent to depth-buffer culling of fragments
though, since the information is not available until we have calculated the
vertex positions. Through utilization of the low-resolution set of nodes and
approximate normals, some information is available though.

In future work of the visualization we are going to look at the possi-
bility of simulating 2d image modalities such as x-ray, CT and MRI. The
visualization of such image modalities will allow us to evaluate the surgical
simulator by comparing post-operative scans with visualization of the simu-
lated procedure in the same image modality as the scan. The visualization
could also be used to train in the field of interventional radiology [52].

Chapter 10

Haptic Feedback

The following chapter is based on the paper [9] and describes our hap-
tic interaction. Compared to the original paper [9], section 10.3 has been
added explaining how we create smooth haptic interaction from discontinu-
ous simulation-data.

10.1 Introduction

Surgical simulators have traditionally been implemented on the CPU and
many algorithms have been proposed in order to calculate realistically look-
ing soft-tissue deformations in real-time. Haptic feedback is often used to
increase the realism of user interactions. This provides an additional chal-
lenge as force feedback must be provided at least at 500 Hz to feel smooth.
To achieve such an update rate from a simulation running at a much lower
frequency, extrapolation schemes have been developed, e.g. [125, 155]. Over-
all, speed has been a major concern as many time-consuming tasks all had
to be handled on the CPU. Motivated by this issue, it was shown in chapter
8 that a twenty to thirty fold acceleration of a Spring-Mass based surgical
simulation could be achieved when moving computations from the CPU to
the GPU (i.e. the graphics card). This allowed real-time surgical simulation
on very complex organs, such as the heart, for the first time. Calculating
tissue deformations on the GPU does however expose some previously unad-
dressed problems on how to resolve haptic interaction. Since communication
with the haptic devices must be handled on the CPU, synchronization and
data transfer between the GPU and the CPU is necessary. Unfortunately
this is a relatively slow operation. Hence, we must carefully design the
communication scheme to avoid new performance bottlenecks.

In this chapter we describe and evaluate an efficient method of haptic
interaction with the GPU based surgical simulator. Haptic feedback is pro-
vided in response to collisions between instruments and tissue. The overall
design criterion is to allow efficient, smooth, two-handed haptic interaction

121

122 CHAPTER 10. HAPTIC FEEDBACK

Figure 10.1: Particles in the Spring-Mass system are connected in a regu-
lar, three-dimensional grid (black). Each particle is allowed to move, but
constrained by the springs to neighboring particles.

and easy balancing of the workload between simulation, visualization, and
delivery of force feedback.

10.2 Materials and Methods

10.2.1 Hardware and Software Platforms

The hardware platform used to evaluate the simulation was a personal com-
puter running Windows XP on an AMD FX-55 CPU, and 2 GB of memory.
The graphics bus was PCI Express x 16. The proposed algorithms were
tested on three different graphics cards, a GeForce 6800 Ultra, a Quadro
FX 4400, and a GeForce 7800 GTX, all from Nvidia. Two Phantom Omnis
(Sensable Technologies) were used to achieve haptic interaction by low-level
access through the accompanying OpenHaptics Toolkit. All programming
was done in C++ using OpenGL and Cg with some manual modifications
of the compiled vertex and fragment programs. The cardiac model used
throughout this chapter was obtained from three-dimensional MRI [173]
using the segmentation algorithm described in [174]. The marching cubes
algorithm was used for all surface reconstructions. Throughout this chapter
we will consider a Spring-Mass simulation of 20.270 particles visualized by
a surface of 137.490 faces.

10.2.2 Spring-Mass Simulation on the GPU

This section provides a short description of our GPU based simulator, since
some terminology from its implementation is necessary to explain the exten-
sion with haptic interaction. First we discretize the volume of the concerned
organ, e.g. the heart muscle mass, into a set of particles arranged in a regular

10.2. MATERIALS AND METHODS 123

Figure 10.2: Excerpt of the position-texture. Each particle in the three-
dimensional grid (Figure 2) is mapped to a unique texel (non-white). White
texels correspond to void simulation particles outside the tissue.

three-dimensional grid (See figure 10.1). Each particle is connected in a fixed
pattern to it’s 18 nearest neighbors. The grid is mapped to a 2D-texture
such that each particle is represented by a single texel (See figure 10.2). We
name this texture the position-texture. Conceptually, parallel computation
of the Spring-Mass system is invoked by rendering a single quad covering the
entire position-texture. Processing of the white (void) particles is avoided
by a depth test. A fragment program computes the forces that influence
each particle due to its spring connections and the Spring-Mass differential
equation is solved by numerical integration to obtain updated particle po-
sitions. We refer to one pass of these calculations as a simulation-step in
the remaining paper. A surface is constructed from the boundary nodes in
the Spring-Mass system and used for visualization. During visualization, a
vertex program performs texture lookups in the position-texture to obtain
the most recent particle positions. This allows us to use a static display
list of the initial surface to also render it deformed. Rendering this surface
is subsequently referred to as a visualization-step. In chapter 9 a mapping
that decouples the visualized mesh from the physical simulation was pre-
sented. This allows for arbitrarily detailed surface meshes to be deformed
by an underlying physical simulation (Figure 10.1).

10.2.3 Probing and Grabbing

The probing gesture (i.e. touching the tissue with an instrument) was re-
alized entirely on the GPU by extending the fragment program responsible

124 CHAPTER 10. HAPTIC FEEDBACK

for the simulation-step. Prior to writing the final position to the position-
texture, each fragment determines if the corresponding particle has moved
inside the bounding ellipsoid of an instrument. In that case the particle
is projected to the boundary of the ellipsoid before updating the position-
texture.

The grabbing gesture was designed to make use of both the CPU and
the GPU. At the beginning of the gesture we read back the position-texture
to the CPU once to identify particles inside the instrument’s bounding vol-
ume and store pointers to these. For the duration of the grabbing gesture
a dedicated fragment program writes the absolute positions of the grabbed
particles into the position-texture based on the current position of the in-
strument.

10.2.4 Haptic Feedback

Communication with the haptic device is handled by the haptic thread on
the CPU. We are consequently required to continuously read back data from
the GPU to the CPU in order to provide haptic feedback. We could transfer
the entire position texture and let the CPU compute the relevant forces
from the current simulation state, however, it is much cheaper to compute
these forces on the GPU and read back only the result. In the following we
describe how to achieve this for the grabbing and probing gestures:

During a grabbing gesture the CPU holds a list of the grabbed parti-
cles and corresponding coordinates in the position-texture as described in
section 10.2.3. We create an off-screen force-buffer the size of this list and
for each particle a dedicated fragment program is run. This fragment pro-
gram looks up the position of all neighbors to the current particle in the
position-texture and calculates the force stored in each spring connection.
The individual spring forces are summed to find the overall force vector af-
fecting the particle. This vector is stored in the force-buffer at the position
corresponding to the processed particle. Finally the force-buffer is read back
to the CPU and passed to the haptic thread. If two hands are active both
sets of corresponding forces are returned in a single read-back. This is an
optimization as each read-back implies a relatively costly synchronization
between the GPU and the CPU.

During a probing gesture the situation is more difficult since the set of
particles contributing to the force feedback is no longer constant during the
gesture, but changes in each frame depending on the position of the instru-
ment. We can re-use the force-buffer approach however, if we extend it with
a fast method to pick the particles that collide with the instrument. Note
that instruments can only collide with surface particles. As a fast pick-
ing algorithm, we propose to render a simulation-surface into an off-screen
picking-buffer. A simulation-surface is a mesh that connects the boundary
particles in the Spring-Mass simulation. It is not necessarily identical to

10.2. MATERIALS AND METHODS 125

Figure 10.3: Contents of the picking-buffer. The simulation-surface is pro-
jected into the picking-buffer as represented by the black mesh. The surface
is shaded with a color representing the texture coordinate in the position-
texture (Figure 10.2) of the corresponding particle in the Spring-Mass sys-
tem (Figure 10.1).

the high-resolution mesh used in the visualization-step due to the mapping
presented in chapter 9. The simulation-surface is rendered as seen from the
base of the associated instrument. It will be shaded with colors that provide
texture coordinates to the nearest simulation node in the position-texture.
The result is a Voronoi-like diagram as illustrated in figure 10.3. During
force-buffer calculations we use this diagram to identify which particles in
the Spring-Mass system are potentially touching the instrument. Consider
a point on the boundary of the instrument. Transforming this point with
the model-view and projection matrices that were used when rendering the
picking-buffer, results in a picking-coordinate. Using this picking-coordinate
for a texture lookup in the picking-buffer provides the texture coordinate
to the corresponding particle in the position-texture due to the shading of
the simulation-surface. To determine if the instrument is actually near the
picked node, the third color-component of the picking-buffer stores the dis-
tance from the picked point on the simulation-surface to the instrument.

The discussion above describes how to use the picking-buffer to find
the position-texture coordinates of the particles colliding with the probing
instrument. It boils down to a single texture lookup for each sampling point
on the boundary of the instrument. In the previously described case of
grabbing, these position-texture coordinates were given directly as input to
the fragment program which updated the force-buffer. When probing, we
extend this fragment program to use instead a texture lookup in the picking-
buffer to obtain the desired position-texture coordinate. The calculation of
probing forces is initialized from the CPU, which keeps a list of sampling
points on each instrument’s boundary. One by one, the sampling points
are projected onto the picking buffer and the resulting picking-coordinates
passed to the force computing fragment program. Each resulting force is

126 CHAPTER 10. HAPTIC FEEDBACK

1 16 31 46

S imulation time

A
c
tu
a
l
ti
m
e

Actual-time

F
o
r
c
e
-f
e
e
d
b
a
c
k

Figure 10.4: In a) is shown a graph of simulation-time vs. actual-time. The
delay during visualization can clearly be seen as discontinuity. For correct
haptic-interaction this graph should be linear. In b) the resulting effect on
force-feedback can be seen clearly as spikes on the graph.

stored in the corresponding entry in the force-buffer, which is finally read
back to the haptic thread on the CPU.

10.3 Smooth Haptic Interaction from Discontinu-
ous Simulation Data

In this section we deal with a specific problem arising within the field of
haptic-rendering. The problem occurs in the GPU based simulation since
it supports the execution of several simulation-steps for each visualization-
step. During a visualization step the simulation is suspended but the user
can move the interaction-device. When simulation is resumed, the position
of the virtual instrument, as seen from the simulation, will appear to have
moved in a discontinuous way, see figure (10.4). A naive solution would
be to try and “smooth” the uneven forces in figure (10.4) b). This is not
a viable solution though, since it does not solve the actual problem. In
general terms, the problem is that the execution time for a simulation-step
does not correspond to the size of the time-step in the numerical integra-
tion (i.e. simulation-time), and that the additional delays introduced are
not constant. Any interaction-data (in actual-time) should consequently be
realigned correctly with the actual execution time of the corresponding time-
step. The non-uniform distribution of simulation-steps not only arises from
the pause during visualization, but also from internal resource distributions
on the GPU. That is, even a pure sequence of simulations steps may not
arrive at regular intervals. As a result of all these issues, both the positions
of grabbed nodes (from haptic-device) as well as the read-back forces (to
haptic-device) are wrong in relation to the simulation. The effect is clearly
felt as uneven and noisy force-feedback, see figure (10.4).

10.4. RESULTS 127

c) S imulation time

a) S imulation s tate in actual time

b) Mapping

d) Interaction in actual time

T ime s egment

Figure 10.5: Given a time segment of one visualization-step and three
simulation-steps. a) shows the actual time of execution for the visualiza-
tion step (diagonal-pattern) and simulation-steps (checkerboard-pattern).
c) shows how the time-segment is divided as seen from simulation-time (i.e.
the size of each simulation-step is constant). b) depicts the correct mapping
between simulation time and actual time. d) shows the arrival of interaction-
data in actual time. Notice how an incorrect direct use of interaction data
(dashed lines) would e.g. miss the big chunk of interaction-data collected
during the execution of the visualization-step. Through the mapping b) the
interaction-data is realigned correctly to the actual execution time of the
time-steps (Follow the fat lines down through the figure).

10.3.1 Method

For the highest quality of haptics, force-feedback is collected after each sim-
ulation step. We propose to realign interaction-time with simulation-time as
follows (see figure 10.5). The average length of a time-segment is maintained
and the number of simulation-steps in a time-segment is known. From this
we divide the time-segment into even intervals - one for each simulation
step, see figure 10.5 c). Assuming a time segment starts with visualization,
interaction-data will arrive while no simulation-step can receive it. A buffer
of interaction-data is consequently maintained. This buffer allows retrieval
of interaction-data corresponding to the simulated time through interpola-
tion of the buffered interaction-data.

10.4 Results

Table 10.1 summarizes the performance measurements obtained from the
simulator for each of the tested graphics cards. As expected the newest
GPU, the GeForce 7800 GTX, is the fastest for fragment and vertex pro-
cessing (rows 1-3). It performs significantly better than the other two cards.
To calculate and read back the accumulated spring forces the cards perform
comparably due to the relatively high synchronization cost of initiating a
data transfer (row 4). A simulator was developed to support haptic inter-

128 CHAPTER 10. HAPTIC FEEDBACK

Table 10.1: GPU rendering times on selected graphics cards.
1One simulation-step in a Spring-Mass system of 20.270 nodes (18 neighbors each).
2One visualization-step (90.868 vertices / 137.490 faces).
3One rendering step of the off-screen picking-buffer (12.031 vertices / 46.928 faces).
4One calculation and subsequent read-back of force feedback from 50 particles.

GeForce 6800 Ultra Quadro FX 4400 GeForce 7800 GTX

Simulation-step 1 2.5 ms 3.5 ms 0.9 ms

Visualization-step 2 19.9 ms 20.8 ms 11.1 ms

Picking-buffer 3,4 6.3 ms 5.3 ms 2.6 ms

Force-buffer 4 0.3 ms 0.7 ms 0.2 ms

action with cardiac models.

The result of applying the proposed method of section 10.3 is that inter-
action data from the haptic-device arrives at the simulation-step at correct
simulation-time, delayed maximally with a visualization-step. Forces from
the tissue-dynamics are read-back after each step of a simulation and now
correspond correctly to the time of interaction, delayed on visualization step,
see figure 10.6.

10.5 Discussion

It is clear from table 10.1 that surface visualization is the single most ex-
pensive task in the simulator. In fact, several simulation-steps could be
performed for each visualization-step while maintaining an overall frame
rate of at least 30 Hz. Here the term overall frame rate covers the accumu-
lated cost of a number of simulation-steps, a visualization-step, rendering
of the picking-buffers, and finally calculation and read-back of the force
buffers. Each simulation-step should be followed by rendering and read-
back of the force-buffer to ensure the highest update frequency of the haptic

Actual-time

F
o
r
c
e
-f
e
e
d
b
a
c
k

Figure 10.6: Applying the proposed method to the interaction from figure
10.4 b) shows a clear removal of noise.

10.5. DISCUSSION 129

devices. When probing, the additional cost of updating the picking-buffers
must also be considered. As seen from the 3rd row in table 10.1, updat-
ing the picking buffer after each simulation-step significantly reduces the
number of simulation-steps possible per overall frame. We briefly mention
two strategies for high-frequency haptic rendering that do not necessitate
picking-buffer updates after each simulation-step. The first strategy is to
read back the force feedback from the GPU at e.g. 30 Hz and use the al-
gorithms presented in [125, 155] to extrapolate this data to the desired up-
date frequency on the CPU. Another strategy is to allow the use a slightly
outdated picking-buffer but proceed with the update and read-back of the
force-buffer based on updated instrument positions. We have chosen the
latter of these two strategies.

Using the GeForce 7800 GTX as an example, we describe a combina-
tion of steps that will lead to an overall frame rate of 30 Hz running the
simulator with haptic interaction. An overall frame rate requirement of 30
Hz corresponds to 33 ms available per frame. 11.1 ms are used for sur-
face visualization. Two picking-buffers (one for each hand) will be updated
once in each overall frame, leaving 17 ms for simulation and force read-back.
During this period we can perform approximately 15 simulation-steps with
subsequent rendering and read-back of the force-buffers. This corresponds
to a simulation-step frequency of 450 Hz.

Comparing the overall system performance to a similar implementation
on the CPU, the GPU implementation is much faster. With the work pre-
sented in this article we believe to be one step closer to a fully functional
cardiac surgery simulator. As a next step we are planning to extend the
simulator with support for suturing of patches to close e.g. septal defects.

130 CHAPTER 10. HAPTIC FEEDBACK

Chapter 11

Building Virtual Models of
the Heart

In this short chapter we present an overview of the process of building the
virtual models of the heart for the GPU accelerated surgical simulator. The
methods presented in the following chapter are based on ongoing develop-
ment with Thomas Sangild Sørensen and Jean Stawiaski.

11.1 Segmentation

We have developed a semi-automated segmentation method based on the
Watershed transform [188]. It is applied to 3D cardiac MRI to produce
patient-specific models for virtual heart surgery. Our method can be used
interactively and efficiently to create specific-models of individual morphol-
ogy.

11.1.1 Algorithm

The Watershed transform uses an intuitive description of boundary in an
image: It considers an image as a topographic surface where the height of
each point is directly related to its gray level. The algorithm then simulates
a flooding of this surface from a finite set of points. To avoid mixing of
water of different sources, a watershed line is constructed where they meet.
The watershed line computed on the gradient of an image finds the high
gradient points which are related to boundaries in the image. In cardiac
MRI this corresponds to e.g. the border between the blood pool and the
myocardium. To avoid over-segmentation due to noise in the images, the
set of points from which the flooding process starts is defined interactively
by the user [18].

131

132 CHAPTER 11. BUILDING VIRTUAL MODELS OF THE HEART

Figure 11.1: Example of a segmented image illustrated by surface rendering
and cut planes overlaid on the original data.

11.1.2 Imaging and Segmentation

All models are reconstructed from 3D MRI acquired with isotropic vox-
els at a resolution of approximately 1.73 mm3, which forms a dataset of
256x256x100 voxels. The images are first filtered using anisotropic diffu-
sion [191]. The user then specifies the different objects of interest in the
image by inserting a few markers from which the watershed transform is
invoked. The user can place markers interactively by drawing on 2D slices.
This method was used to segment the blood pool and myocardium volume
semi-automatically (figure 11.1). After the segmentation step, the user can
add or delete markers if it is necessary.

11.1.3 Image Visualization

We have developed software dedicated to heart MRI segmentation and vi-
sualization. Our software allows the user to explore a highly detailed view
of the dataset for easy interpretation. This is important for validation pur-
poses. The user can also view the segmented image as a set of surfaces, one
surface for each region. The marching cubes algorithm was used to extract
detailed surfaces of the segmented image. Users can visualize the surfaces
and overlay it with the original dataset. It is also possible to view 2D slices of
both the segmented and the original image as well as a 3D volume rendering

11.2. MODELS SUITABLE FOR SURGICAL SIMULATION 133

of the original dataset (figure 11.1).

11.1.4 Software

The user interface of our software was developed with python Tk-inter and
visualization of the images is performed using the Visualization Toolkit
(VTK). The segmentation tasks are done with our own custom image pro-
cessing library. The software can be easily extended for other segmentation
tasks, e.g. other organs and imaging modalities.

11.1.5 Discussion

We encountered problematic issues with the segmentation of the right ven-
tricular epicardium due to bad contrast of the bordering tissue. The res-
olution of the images is often too small to distinguish clearly this part of
the heart. However we believe the problem can be solved via new methods
based on graph-cuts and minimal surfaces [25] .

11.2 Models Suitable for Surgical Simulation

Our aim is to obtain a volumetric segmentation of the heart muscle (the
myocardium) and vessel walls and use a Spring-Mass simulation to interac-
tively deform this volume. Surface visualization of the deformed volume is
fully decoupled from the physical simulation.

11.2.1 Obtaining the Volumetric Simulation Grid

A typical 3D MRI results in a dataset of 256x256x100 voxels [173]. The
number of tissue voxels classified by the segmentation process is in the order
of 250.000. Even for an optimized Spring-Mass system resolved on the GPU,
simulation and convergence rates are inadequate for such a large system. We
consequently down-sample by a factor of 23 to obtain approximately 30.000
simulation nodes in a regular grid.

11.2.2 Surface Visualization Processing

A highly detailed surface is extracted of the endocardium-, epicardium-,
and vessel borders at the full resolution of the segmentation by the march-
ing cubes algorithm. The resulting model easily contains 1.000.000 triangles.
As described in chapter 9 we represent each vertex by an offset from a sim-
ulation grid node. This deforms the surface based on the deformation of the
underlying simulation grid, but also requires some per vertex processing. As
this is a relatively slow operation we reduce the triangle count in the model
to avoid a visualization bottleneck. Normal maps are used to conserve the
details of the high-resolution mesh in the simplified model of 50.000-100.000

134 CHAPTER 11. BUILDING VIRTUAL MODELS OF THE HEART

Figure 11.2: Virtual heart environment with child, the open chest, several
pieces of green paper covering body and head, and the operating table. The
visualization of each element can be turned on and off.

faces. As described in chapter 10 our implementation of force feedback re-
quires off-screen rendering of a low resolution model with a vertex for each
surface point in the simulation grid. This model is obtained again from the
marching cubes algorithm.

11.2.3 Discussion

We see two potential scenarios for the current simulator prototype; patient-
specific preoperative planning, and surgical education. For the first scenario
we can segment the blood pool, the left sided myocardium and grow ves-
sel walls in an hour in good quality datasets. The right sided myocardium
remains a challenge to model accurately, but can be “grown” to a certain
thickness surrounding the blood pool by a dedicated volume paint applica-
tion.

For the educational scenario we can spend the time it takes to create
each model. In figure 9.9 we normal mapped the myocardial surface with
the coronary arteries drawn manually by a graphics artist. In both patient-

11.2. MODELS SUITABLE FOR SURGICAL SIMULATION 135

specific preoperative planning and surgical education the final virtual model
can be placed into the virtual child of figure for added realism.

136 CHAPTER 11. BUILDING VIRTUAL MODELS OF THE HEART

Chapter 12

Using the Surgical Simulator
for Incision Planning

This chapter is based on the journal paper [13] and abstract [12], co-authored
with clinical personnel from both Denmark and Germany, and presents a
preliminary informal evaluation of the GPU accelerated surgical simulator
for incision planning in training and pre-operative planning. The chapter
has been considerably expanded in almost every section compared to the
original paper [13] specifically an additional CT dataset is included in the
discussion of pre-operative planning.

12.1 Introduction

Recent advances in high-resolution, three-dimensional (3D) imaging modali-
ties such as magnetic resonance imaging (MRI) and multidetector computed
tomography (MDCT) have provided new means to virtually reconstruct the
morphology of the heart [24, 173, 67, 174, 93, 160]. To prevent degraded
image quality as a result of blurring from cardiac motion, the underlying
image acquisition is triggered to the resting period of the heart. Hence,
both the intracardiac and the extracardiac morphology can be modeled ac-
curately. For patients with complex congenital heart disease, exploration of
these virtual reconstructions has become an integrated part of the preoper-
ative planning process in many institutions [67, 93, 160, 174]. In addition,
the virtual models can be reproduced as cast models with rapid prototyping
[138].

In several areas of surgery, preoperative planning and surgical training
using virtual models has been taken one step further. As seen previously
in this thesis, surgical simulators are available, which allow entire surgical
procedures to be rehearsed in a virtual environment. A typical surgical
simulator provides elastic tissue deformations in response to user interaction,
and supports cutting and suturing in the virtual model. It is essential that

137

138 CHAPTER 12. INCISION PLANNING

Figure 12.1: Reformatted slice from a isotropic 3D SSFP MRI acquisition
[173] in patient 1 showing the larger of two ventricular septal defects (circle).
Abbreviations. RV: right ventricle, LV: left ventricle, PUL: main pulmonary
artery.

the simulator responds to user interactions in real-time in order to imitate
real procedures realistically. For a complex organ like the heart however,
the existing techniques have not been able to run interactively until very
recently. In fact, very few simulators have previously approached any form
of open surgery.

This chapter presents our first experiences using a real-time surgical sim-
ulator for incision planning in relation to congenital heart disease. In this
initial work we investigate two hypotheses, namely that 1) patient-specific
incision planning using deformable virtual models of the individual mor-
phology can be used to pre-operatively determine which incisions provide
the best access to access a given defect, and 2) on a generalized virtual
model containing any desired ventricular- and/or atrial septal defects, in-
cision simulation can be used as an educational tool to illustrate various
incision strategies to access these defects.

12.2 Materials

The study population for each of the two intended scenarios is described
below.

12.2.1 Patient-Specific Simulation

To study our first hypothesis of patient-specific simulation, incision sim-
ulation was performed to evaluate potential corrective strategies for two
patients clinically referred for three-dimensional MRI [173].

12.2. MATERIALS 139

Figure 12.2: Three-dimensional reconstruction in patient 1 showing an in-
traventricular baffle (streamlined) leading blood from the left ventricle to
the aorta. Abbreviations. RA: right atrium, RV: right ventricle, LV: left
ventricle, AO: aorta.

Figure 12.3: Three reformatted images from an isotropic 3D SSFP MRI
acquisition [173] in patient 2. The circles mark a restrictive ventricular
septal defect as seen from a sagittal- (top right), a coronal- (lower right),
and an oblique transversal view (left). Abbreviations. RV: right ventricle,
LV: left ventricle, PUL: main pulmonary artery, AO: aorta.

140 CHAPTER 12. INCISION PLANNING

Patient 1 was a ten year-old girl born with double outlet right ventri-
cle, the great arteries side-by-side with the aorta to the right, and a sub-
pulmonary VSD. An intra-ventricular baffle was inserted for a biventricular
repair. Subsequently, echocardiography and MRI has revealed that two baf-
fle leakages remain following this procedure (See figure 12.1). Furthermore,
the intra-ventricular tunnel appears restrictive (See figure 12.2).

Patient 2 was a five year-old boy with a univentricular heart (dextrocar-
dia, hypoplastic right ventricle, discordant ventriculo-arterial connections,
and left pulmonary artery stenosis). Following three Fontan operations re-
sulting in total cavo-pulmonary connection (TCPC), he was examined for a
possibly restrictive VSD (See figure 12.3).

Incision simulation was performed to evaluate potential corrective strate-
gies. In both cases the exact positions of the ventricular septal defects were
visualized through the chosen incisions. In the first patient we additionally
examined the narrow intra-ventricular tunnel. The purpose was to use this
information in order to decide on the best surgical approach. The study was
approved by the institutional ethics committee on human research.

12.2.2 Generalized Incision Simulation

To examine our second hypothesis of a generalized surgical simulator we
obtained both a MDCT dataset of a plastinated adult heart specimen from
a patient with dilated cardiomyopathy1 and an MR based dataset of an
adult volunteer’s normal heart.

Prior to reconstruction of the CT dataset, we manually introduced a sub-
pulmonary muscular ventricular septal defect (VSD) and an apical VSD in
the dataset. From the MR dataset we obtained a configurable model of
several atrial- and ventricular septal defects in which the defects were added
by hand.

The basic idea in this scenario is to use the surgical simulator as an edu-
cational tool to locate the VSDs both trans-atrially and trans-ventricularly,
and to subsequently compare the accessibility to the VSD by the two ap-
proaches [16, 186, 184]. The purpose of this scenario was to make a prelim-
inary examination of the potential for such a tool in the surgical education:
Is it likely to help overcoming learning curves by moving parts of the sur-
gical training to a virtual environment as has happened in the education
of laparoscopic surgery [69, 72, 115]. In this context overcoming a learning
curve captures the process of moving along the learning curve until the point
where one can safely perform a specific procedure in a patient.

1A disease that make the heart become enlarged

12.3. METHODS 141

12.3 Methods

Accurate imaging and segmentation are prerequisites to reconstruct a virtual
model suitable for incision simulation. Furthermore, a realistic looking,
interactive model for tissue deformation is required.

12.3.1 Imaging

MRI was performed on an Intera 1.5T scanner (Philips Medical Systems,
Best, Netherlands) using an isotropic, three-dimensional steady state free
precession acquisition protocol [173] under general anesthesia with respira-
tion gated to a 5 mm window on the right hemi-diaphragm. Images were
obtained with a resolution of 1.75 mm3 and acquired in end-diastole.

MDCT of the plastinated heart specimen was performed in approxi-
mately 10 seconds using a high-resolution acquisition (in plane resolution:
0.34 x 0.34 mm, slice thickness: 0.75 mm, slice gap: 0.50 mm) on a Sensation
16 scanner (Siemens Medical Solutions, Erlangen, Germany)[67].

12.3.2 Segmentation

From each MRI dataset we reconstructed a virtual model of the myocardium
and vessel borders using the Virtual Reality Heart software (Systematic
Software Engineering, Denmark) and custom software.

The MDCT data of the human heart specimen were easily segmented
and converted to a 3D model by defining the threshold value separating the
tissue from air using custom software.

12.3.3 Simulation

A Spring-Mass system was used to simulate the elastic properties of the
modeled tissue as described in the previous chapters 7, 9 and 10. Spring-
Mass systems have been used intensively in the medical simulation literature
previously, but have only been running interactively on simple morphology.
Fortunately, by resolving the necessary force computations entirely on mod-
ern consumer graphics cards, the Spring-Mass system could be applied to
complex morphology such as the heart as well. Two-handed interaction was
achieved by two Phantom Omnis (Sensable Technologies, USA) providing
the exact three-dimensional position and orientation of each hand (See fig-
ure 12.4). In addition, each of these devices was programmed with force
feedback giving the user the sensation of being able to touch the surface and
feel the magnitude of the forces applied during the procedures as described
in chapter 10.

142 CHAPTER 12. INCISION PLANNING

Figure 12.4: Setup of the surgical simulator. Two Phantom Omnis (Sensable
Technologies, USA) are used for free-hand interaction with force feedback.
Cutting and tissue manipulation can be performed interactively.

12.4 Results

The 3D MRI acquisitions were completed successfully for each of the two
patients in less than ten minutes each. Unfortunately, segmentation of the
myocardium was quite time consuming and required about 10 hours for
each of the two dataset: In approximately 20 minutes our software was
capable of identifying the blood pool in the images and hence determine the
endocardium and blood pool border. Identifying the epicardium border was
much harder and ended up taking practically all the segmentation effort.
We ended up tracing a significant part of the epicardium border manually.
Vessel walls were automatically “grown” from the endoluminal borders.

The human heart specimen was MDCT scanned successfully with sub-
millimeter resolution. As only tissue generated signal in this dataset, seg-
mentation and reconstruction could be done instantly.

The muscular and the apical VSDs and ASDs in both the MR and CT
dataset were added manually, requiring just a few additional minutes of
work.

In the virtual models arbitrary incisions could be made and the bordering
tissue pulled aside, using the elastic behavior of the tissue to provide realistic
views of the intra-cardiac morphology.

12.4. RESULTS 143

Figure 12.5: Incision simulation in patient 1. a) An incision has been made
at the aortic root (in the right ventricle) showing a narrow intraventricular
pathway (circle). The tips of two surgical tools that keep the incision open
can be seen. b) An incision at the pulmonary root reveals the position of a
ventricular septal defect (circle in enlargement). Abbreviations. RA: right
atrium, RV: right ventricle, AO: aorta, PUL: main pulmonary artery, SVC:
superior vena cava.

12.4.1 Patient Specific Scenario

Figure 12.5 shows two incisions in the virtual reconstruction of patient 1. In
figure 12.5 a) an incision at the aortic root was made to visualize the interior
baffle pathway (white circle). From this view it is clear that the narrow
baffle is restrictive. Surgical replacement of the baffle has been discussed
but no final decision made. Figure 12.5 b) shows an incision at the root
of the main pulmonary artery revealing the exact location of the larger of
the two ventricular septal defects (circle in insert). This location allows
closure either by surgery or by catheterisation. Considering the complex
surgical procedure necessary to replace the baffle compared to the good
clinical condition of the patient, the patient has not been further operated
up to now. However, the ideal access to the encircled VSD (See figure 12.5
b)) was clearly demonstrated by the simulator.

Figure 12.6 shows two incisions in patient 2. Figure 12.6 a) shows our
initial approach: an incision at the aortic root (viewed from above). The
simulator reveals that the location of the VSD (white circle) would be diffi-
cult to reach from this incision simply due to the distance. Fortunately the
simulator allows us to rethink and redo the incision: By moving it slightly
downwards as shown in figure 12.6 b,) the VSD is now more directly acces-
sible (white circle). Very importantly, the course of the coronary arteries is
also visible and avoided by the current incision. Based on the available imag-
ing information, it was decided that surgery to enlarge the VSD is necessary.

144 CHAPTER 12. INCISION PLANNING

Figure 12.6: Incision simulation in patient 2. a) Viewed from above, an
initial incision at the aortic root reveals a restrictive but hard-to-access
ventricular septal defect (circle in enlargement). b) From an anterior view, a
second incision makes the VSD more easily accessible (circle in enlargement).
Abbreviations. AO: aorta, RV: right ventricle, LV: left ventricle, LPA: left
pulmonary artery.

Of the two surgical strategies illustrated in figure 12.6, the incision shown
in figure 12.6 b) was the most promising and it has been recommended.

12.4.2 Generalized training scenario

Figure 12.7 shows four incisions, two right ventriculotomies, an apical in-
fundibulotomy, and a trans-atrial approach to reveal the muscular and the
apical VSDs (white circles) introduced in the plastinated heart specimen.
Figure 5a shows an incision covering a significant part of the right ventricu-
lar wall perpendicular to the acute marginal branches of the right coronary
artery (RCA). Although damaging to the electrical conduction system and
hence not feasible for actual surgery, it shows the exact location of the mus-
cular VSD. In figure 12.7 b) the transventricular incision was moved to the
pulmonary root avoiding the RCA branches. It is now necessary to use an
instrument to get access to and visualize the defect. In figure 12.7c) an
apical infundibulotomy provides direct access to the apical VSD. Finally a
trans-atrial approach is used in figure 12.7 d): The muscular VSD can be
identified when the tricuspid orifice is moved slightly by an instrument. The
apical VSD is not visible from this view however [186].

Figure 12.8 shows a trans-ventricular incision (a) and a trans-atrial in-
cision (b) to reveal a mid-muscular VSD that was manually introduced in
the 3D MRI of a volunteer. Figure 12.8a shows an incision at the root of

12.4. RESULTS 145

Figure 12.7: Incision planning as a generalized training scenario. Four inci-
sions are used to locate a muscular and an apical ventricular septal defect
(circles) in the virtual reconstruction of a plastinated heart specimen. a)
A right ventriculotomy reveals the exact position of the muscular VSD. b)
The muscular VSD visualized through an incision at the root of the main
pulmonary artery (PUL). The right- and leftmost surgical tools hold the
incision open, while a third tool (center) pulls the septal wall to reveal the
defect. c) The apical VSD visualized through an apical infundibulotomy.
d) The muscular VSD visualized trans-atrially. The central tool pulls the
tricuspid orifice slightly to improve accessibility. Abbreviations. RA: right
atrium, RV: right ventricle, LV: left ventricle, AO: aorta, PUL: main pul-
monary artery, RPA: right pulmonary artery, IVC: inferior vena cava, SVC:
superior vena cava, LAD: left anterior descending coronary artery.

146 CHAPTER 12. INCISION PLANNING

(a)

(b)

Figure 12.8: Incision simulation as an educational tool. A muscular ven-
tricular septal defect (circles) is accessed by a trans-ventricular incision (a)
and a trans-atrial incision (b). Abbreviations. RA: right atrium, RV: right
ventricle, LV: left ventricle, AO: aorta, MPA: main pulmonary artery, IVC:
inferior vena cava, SVC: superior vena cava.

12.5. DISCUSSION 147

the main pulmonary artery perpendicular to the acute marginal branches
of the right coronary artery and the left anterior ascending coronary artery.
The muscular VSD is revealed (white circle) by the central instrument. The
access to this VSD by a trans-atrial approach is shown in figure 4b. The
initial incision is visible at the top-left part of the subfigure.

12.5 Discussion

For many years preoperative planning in congenital heart disease has relied
on the abilities of surgeons to convert two-dimensional imaging informa-
tion to three-dimensional mental models and surgical strategies. In order to
decide on the most optimal surgical strategy methods such as e.g. echocar-
diography, catheterisation, MRI, or MDCT have been used as the basis
for evaluating the feasibility of potential strategies. Virtual reconstructions
were recently introduced as a new supplementary tool to assist in this pro-
cess, giving a three-dimensional overview of the morphology [67, 174]. In
this article we have taken this work one step further: By providing an inter-
active setup that offers surgeons an opportunity to make arbitrary incisions
on elastic virtual models, realistic three-dimensional surgical views of the
intracardiac morphology can be provided pre-operatively. A superior spa-
tial understanding of potential surgical incisions in relation to individual
morphology can be obtained since the simulator lets the user examine mor-
phological details and incisions from any desired angle. Subsequently, when
a good understanding of the individual morphology has been reached, a
specific surgical strategy can be evaluated by making the desired incisions
using the simulator and estimate the accessibility to the relevant cardiac
structures.

In patient number 1 we used this tool to visualize a restrictive intra-
ventricular baffle and an associated VSD. The information provided by this
representation of the intracardiac morphology has been an important factor
in the currently ongoing decision-making for the patient. It is our belief
that surgical procedures are facilitated by the improved 3D understanding
of complex intracardiac malformations.

In patient number 2 we visualized a restrictive VSD, this time through
two slightly different incisions. Due to the risks of impairing right ventricular
function associated to an extended ventriculotomy, the initial incision was
placed right at the root of the main pulmonary artery. It turned out, how-
ever, that through this incision it would be hard to reach the VSD (Figure
12.6a). Consequently, a new incision was made which provided better access
to the defect (Figure 12.6b). Again, the incision simulator provided impor-
tant preoperative information on how to proceed with the actual surgery.
Similar experiences regarding the surgical approach of this type of defect
have previously been reported [176].

148 CHAPTER 12. INCISION PLANNING

In figure 12.7 we used the simulator with a slightly different purpose,
namely to generally illustrate the access to a muscular VSD by a transatrial
approach, by a right ventriculotomy, and by an apical infundibulotomy in
figure 12.7. In our search to locate the VSD we initially performed a large
right ventriculotomy, which in real-life would have severe consequences for
the ventricular function (Figure 12.7a). The simulation however provided us
with this freedom to get an overview of the morphology. With this overview
in mind we were able to quickly locate the VSD through a less extended
right ventriculotomy in 12.7 b). As suggested by Van Praagh, Tsang, and
Myhre [186, 184, 139] an apical infundibulotomy would be an alternative
approach. This is illustrated in figure 12.7 c). To complete the picture,
we visualized the VSD by a transatrial approach in figure 12.7 d). Hence,
the access to the defect could be examined from several surgical strategies.
This first general heart-model was based on CT images and as such we also
demonstrated a general heart-model based on MRI. In figure 12.8 we used
the simulator to generally illustrate the access to a septal defect by two
different incisions in a virtual heart model based on MRI. We specifically
demonstrated the access to a ventricular septal defect by a trans-ventricular
and a trans-atrial approach. As all defects were introduced manually by
post-processing, any imaginable position and size of the VSD would have
been possible. We believe that the freedom in the points we are able to teach
using an interactive incision simulator makes it a promising new educational
tool to illustrate various incision strategies to access septal defects. By this
discussion we approve our second hypothesis.

We are currently using the tools described in [174] to segment the 3D
MRI and reconstruct the morphological models. This is currently a time con-
suming process as the software was designed to rapidly identify the blood
pool but not the myocardium. We are consequently continuing our research
in segmentation algorithms to better detect the epicardium border. In com-
bination with a “3D sculpturing tool” in preparation we optimistically expect
to be able to create patient-specific models suitable for incision simulation
in just an hour or two in the near future - provided a good quality 3D MRI
is available.

Speculating on the basis of future improvements to the simulator, the
advantages of surgical simulation are (at least) two-fold. Firstly, we can
illustrate various elements of surgical procedures, and secondly, we can allow
surgeons to rehearse these elements virtually. The incision planning tool we
presented in this chapter is the first step on a long road. When support
for suturing and handling of patches is added, we could potentially rehearse
complex or rare surgical procedures (e.g. a double outlet right ventricle
repair or a Mustard operation) in a virtual environment. In figure 12.6
and 12.7 there was no constraints on the angles and positions from which
the heart could be examined and accessed. In future scenarios, the natural
limitations caused by the positioning in the thorax needs to be addressed

12.5. DISCUSSION 149

in order to achieve a realistic training scenario. One step in this direction
is shown in the supplementary online movie (included on the DVD of this
PhD thesis) and in figure 12.4, in which a model of the thorax was included
in the graphics.

The education of young surgeons relies on a master/apprentice relation-
ship and follows the “see one, do one, teach one” principle in broad terms.
We believe that in a foreseeable future, surgical simulators will become im-
portant tools to aid in these transitions. They could provide numerous
training scenarios with an unlimited number of trials that will allow young
surgeons to experiment and learn from their mistakes. Eventually, these
surgeons will be better prepared for their upcoming work in the operating
theatre. Fully developed surgical simulators also hold potential to increase
the cost-effectiveness of surgical training. The time used for training could
become shorter since particular and even rare cases could be performed
repeatedly without any preparation. Furthermore, optimally prepared pro-
cedures are likely to minimize the costs of follow-up treatments.

150 CHAPTER 12. INCISION PLANNING

Chapter 13

Conclusion and Future Work

Each of the major chapters 7, 8, 9, 10, and 12 based on published papers
have presented conclusions, discussions, and future work sections on each of
the subproblems. In this chapter I will shortly recap some of the highlights
and revisit the original problem definition.

13.1 Conclusion and Discussion

I will begin the final conclusion by revisiting the original problem definition.
The computer science problem formulation from section 1.2.2 is reprinted
here for ease:

Problem Simulating and visualizing tissue deformation in models with
complex morphology is not fast enough with existing methods
and hardware. Heart surgery is such a case, and has thus not
previously been simulated.

Hypothesis Through utilization of graphics hardware, a surgical simulator
for complex morphology can be constructed - thereby meeting
the demands of the previous item.

Method Develop and evaluate the technical components for a GPU-based
surgical simulator including soft-tissue simulation, visualization
and haptic-interaction.

Limitations The developed techniques should be generally applicable in
physics based animation.

Through the last part of the thesis I have presented our work on the GPU
accelerated surgical simulator for complex morphology. Through a series
of chapters coinciding with published papers I have presented the differ-
ent modules necessary for a complete surgical simulator; tissue-deformation
(chapter 8), visualization (chapter 9) and haptic-interaction (chapter 10).

151

152 CHAPTER 13. CONCLUSION AND FUTURE WORK

Although pediatric cardiac surgery has been my major focus throughout
this PhD-project, each of the methods presented are generally applicable
within the field of physics based animation. The Spring-Mass model itself is
used in many different cases not related to surgical simulation, and as such
our work on GPU accelerated Spring-Mass is applicable to each of these
cases. In many cases the Spring-Mass model is used for real-time interac-
tion and as such our work on visualization and haptics-interaction is also
applicable in general. On several occasions through our work on the GPU
accelerated surgical simulator, we have been made aware of the fact that
many people in the surgical simulation community would like to take ad-
vantage of the GPU. It seems that the learning curve is rather steep though.
We consequently published an introductory paper [10] on which chapter 7
was based. The original problem formulation has thus been dealt with in
detail.

The clinical problem formulation from section 1.2.1 is reprinted here:

Problem Surgery on the heart of a child with a congenital heart defect
requires good understanding of the heart morphology in relation
to the steps of potential surgical strategies.

Hypothesis Going through the surgical procedure, experimenting and ex-
ploring the heart in a virtual setting, provides a better under-
standing of the heart morphology in relation to potential surgi-
cal strategies in both pre-operational planning and in training
in general.

Method Develop a working prototype of a real-time surgical simulator
for congenital heart defects.

Limitations Although we have a tight interdisciplinary cooperation, the ma-
jor goal of the clinical problem formulation in terms of this PhD-
thesis is as a facilitator for interesting aspects of computer sci-
ence. As such a formal clinical evaluation and implications of the
surgical simulator is not given primary attention in the remain-
ing thesis. We have conduced a preliminary survey of the tool
as an incision simulation though which is presented in chapter
12.

In chapter 12 we have demonstrated in cooperation with pediatric sur-
geons that the surgical simulator as a pre-operative tool and training tool
has the potential to give surgeons more information on incision planning. At
a more informal level, the surgeons have been involved throughout the entire
process and as such we have worked towards solving the problem as stated
in the clinical problem formulation. Concerning the clinical hypothesis, we
cannot conclude, based on the executed research, that the simulator will

13.2. FUTURE WORK 153

Figure 13.1: A reconstruction of the heart of the author of this PhD thesis.

benefit health-care with measurable improvements. We have some promis-
ing indications of the fact though. The clinical problem formulation from
section 1.2.1 has been the main motivating factor for this PhD project on
both a professional level and on a personal level. I have put my whole heart
into this project - literally, see figure (13.1).

13.2 Future Work

Each of the individual contributions of chapters 7, 8, 9, 10, and 12 have
sections on future work specific to each method. In this section I will look at
the future work concerning surgical simulation in a more broad perspective
related to the utilization of graphics hardware.

In the following paragraph we return to what graphics hardware was (and
for the largest part, still is) about, namely games. Our published methods
have been derived from the problem area of heart surgery, but could be
applied in computer games as well, coming full circle with respect to what
GPU’s are really developed for. The two largest manufacturers of GPU’s,
Nvidia and ATI have also recognized the use of the GPU for physics calcula-
tion in games. In Q2 of 2006 Havok and Nvidia have consequently released
the Havok FX [87] for rigid body physics, particle physics, and collision ef-
fects on the GPU. In a hardware-configuration with two GPUs, one could
be used for physics while the other is used for visualization. The release of
Havok FX is in direct competition with the physX chip by Ageia (released
in May 2006) which can do rigid body physics, fluid simulation, and cloth
simulation on a dedicated chip (The physics processing unit, PPU). In all

154 CHAPTER 13. CONCLUSION AND FUTURE WORK

cases the hardware acceleration of physics based animation is an important
line in future game development. The first steps in enabling true deformable
materials in games, accelerated by custom hardware have been taken. Com-
bining this with haptic-interaction and highly detailed visualizations would
enable more realistic and innovative games. Through this PhD project I
have contributed with specific methods and techniques that can be utilized
in such future work.

Concerning the general methodology of creating surgical simulators I
have two issues to discuss for future work; the high level language support
for the type of application we have developed, and the decoupling of visual-
ization and simulation.

Previous research projects [127, 40, 114] have constructed compilers and
libraries for high level programming languages that compile to either the
CPU or the GPU as the target architecture. This allows the programmer
to relatively easy test whether a particular computation has the potential
to benefit from a GPU based implementation. However, in many scien-
tific computing applications, including surgical simulation, the interaction
and visualization is as important as the computation itself. No explicit
constructs for visualization or interaction in relation to computations are
present in [127, 40, 114], and neither are constructs for an efficient interplay
between the CPU and the GPU. Consequently, if the application requires
visualization, interaction, or CPU/GPU cooperation, a performance bottle-
neck resulting from data transfer overhead is easily introduced as data is
transported back and forth multiple times between the CPU and GPU. In
the last third part of this thesis, I have presented some specific methods to
deal with a relatively small range of these issues. For future development of
surgical simulation in specific, and scientific computing in general, a frame-
work (in the spirit of the frameworks presented in section 4.4) specifically for
applications of scientific computing (including visualization and simulation)
supporting the effective utilization of GPU and CPU would be beneficial.

The other issue that I wish to discuss in general is the decoupling of
visualization and simulation. In the existing research on surgical simulation
based on tissue deformation, there has traditionally been a strong coupling
between what is simulated and what is visualized - for obvious reasons.
i.e. every visualized vertex corresponds directly to a simulated node. The
mapping presented in chapter 9 was motivated by a jagged visualization,
but I would advocate that the decoupling of visualization and simulation is
valuable as a general strategy in thinking about medical visualization and
simulation. Different modalities of spatial-information, transformed by the
deformation and incisions of the simulation-engine, potentially hold a range
of different kinds of important information to surgeons. As an example;
the heart simulator as presented in this thesis shows a visual surface de-
formed by the soft-tissue simulation. In that case, the shape of the visual
surface corresponds closely to the surface of the simulated particles. As a

13.2. FUTURE WORK 155

supplementary tool of information, we could also embed a visual surface
representation of the coronary arteries as a separate model from the heart-
surface. This would give surgeons additional information on the location of
incisions and deformations in relation to the coronary arteries. We could
also use the deformations and incisions to transform a set of data-points
in 3d representing risk-areas in surgery (a static risk-area is presented in
[167]). In that case, we could evaluate the potential risk of every incisions
at every point of time in the simulation. Another example is to apply the
deformations to the original MRI to get simulated post-operative MRI that
could subsequently be compared to real post-operative MRI for validation.
A whole taxonomy of spatial information in relation to a series of defor-
mation and topological changes can be set-up; points in space or voxels,
surfaces, volumes, and textures.

Finally we return to the actual software-development of this PhD project;
a working prototype of a simulator for surgery on pediatric heart defects. In
this PhD-project a considerable amount of resources have been put into the
development of the simulator to a level of maturity and stability allowing
for it to be used by surgeons and other people not involved in the techni-
cal development. Specifically through our clinical paper [13], our hands-on
demonstration at the SIGGRAPH Emerging Technologies [11, 7], and a
planned hands-on demonstration at the Nordic Meeting for Pediatric Car-
diology, this level of stability has been demonstrated. The prototype has
of course not reached a level of maturity corresponding to a commercial
product and technical support specifically is still necessary to create new
heart-models. But all taken into account, the next logical step in the devel-
opment of the project for surgical simulation in pediatric heart surgery is
a more thorough clinical evaluation both for pre-operational planning and
training. The goal naturally being to release a tool for pediatric surgeons all
over the world, for them to benefit from - the end goal being that children
with congenital heart defects will have a higher chance of survival.

156 CHAPTER 13. CONCLUSION AND FUTURE WORK

Bibliography

Publications by the author

[1] Jesper Mosegaard. Realtime cardiac surgery simulation. Master’s the-
sis, Department of Computer Science, University of Aarhus, Denmark,
2003.

[2] Jesper Mosegaard. Lr-spring mass model for cardiac surgical simu-
lation. Proceedings of Medicine Meets Virtual Reality 12. Studies in
Health Technology and Informatics, 12:256–258, 2004.

[3] Jesper Mosegaard. Parameter optimisation for the behaviour of elastic
models over time. Proceedings of Medicine Meets Virtual Reality 12.
Studies in Health Technology and Informatics, 12:253–255, 2004.

[4] Jesper Mosegaard, Peder Herborg, and Thomas Sangild Sørensen. A
GPU accelerated spring mass system for surgical simulation. Proceed-
ings of Medicine Meets Virtual Reality 13. Studies in Health Technol-
ogy and Informatics, 111:342–348, January 2005.

[5] Jesper Mosegaard and Thomas Sangild Sørensen. Gpu accelerated
surgical simulators for complex morphology. In IEEE Virtual Reality,
pages 147–154, 323. IEEE Computer Society, March 2005.

[6] Jesper Mosegaard and Thomas Sangild Sørensen. Real-time deforma-
tion of detailed geometry based on mappings to a less detailed physical
simulation on the gpu. In Proceedings of Eurographics Workshop on
Virtual Environments, volume 11, pages 105–111. Eurographics Asso-
ciation, 2005.

[7] Jesper Mosegaard and Thomas Sangild Sørensen. Technical aspects
of the gpu accelerated surgical simulator. In SIGGRAPH Application
Sketches, Boston, USA, 2006. in press.

[8] Thomas Sangild Sørensen and Jesper Mosegaard. Surgical planning
in congenital heart disease by means of real-time medical visualisation
and simulation. In ACM SIGGRAPH Computer Animation Festival,
2005.

157

158 BIBLIOGRAPHY

[9] Thomas Sangild Sørensen and Jesper Mosegaard. Haptic feedback
for the GPU-based surgical simulator. Proceedings of Medicine Meets
Virtual Reality 14. Studies in Health Technology and Informatics,
119:523–528, 2006.

[10] Thomas Sangild Sørensen and Jesper Mosegaard. An introduction to
gpu accelerated surgical simulation. In Matthias Harders and Gábor
Székely, editors, Biomedical Simulation: Third International Sympo-
sium, ISBMS 2006, volume 4072 of Lecture Notes in Computer Sci-
ence, pages 93–104. Springer Berlin / Heidelberg, 2006.

[11] Thomas Sangild Sørensen and Jesper Mosegaard. Virtual open heart
surgery - training complex surgical procedures in congenital heart dis-
ease. In ACM SIGGRAPH Emerging Technologies, 2006.

[12] Thomas Sangild Sørensen, Jesper Mosegaard, Gerald Greil, Ole Kro-
mann Hansen, and Vibeke E. Hjortdal. Preoperative planning by
surgical simulation on patient-specific high-resolution virtual models.
In The Fourth World Congress of Pediatric Cardiology and Cardiac
Surgery, volume 4, page 230, 2005.

[13] T.S. Sørensen, G.F. Greil, O.K. Hansen, and J. Mosegaard. Surgical
simulation - a new tool to evaluate surgical incisions in congenital heart
disease? Interactive Cardiovascular and Thoracic Surgery, 2006.

Publications by other authors

[14] Michael J. Ackerman. Accessing the visible human project. Technical
report, Corporation for National Research Initiatives, October 1995.

[15] Ritesh Agarwal, Yogendra Bhasin, Laks Raghupathi, and Venkat De-
varajan. Special visual effects for surgical simulation: cauterization,
irrigation and suction. Proceedings of Medicine Meets Virtual Reality
11. Studies in Health Technology and Informatics, 94:1–3, 2003.

[16] Christos Alexioua, Qiang Chena, Maria Galogavroub, James
Gnanapragasamb, Anthony P. Salmonb, Barry R. Keetonb, Marcus P.
Hawa, and James L. Monroa. Repair of tetralogy of fallot in infancy
with a transventricular or a transatrial approach. European Journal
of Cardiothorac Surgery, 22(2):174–183, August 2002.

[17] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J.
Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKen-
ney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

BIBLIOGRAPHY 159

[18] Serge Beucher and Fernand Meyer. The morphological approach of
segmentation: The watershed transformation. In E. Dougherty, editor,
Mathematical Morphology in Image Processing, chapter 12, pages 43–
481. New York: Marcel Dekker, 1992.

[19] Daniel Bielser and Markus H Gross. Open surgery simulation. Pro-
ceedings of Medicine Meets Virtual Reality 02/10. Studies in Health
Technology and Informatics, 85:57–63, 2002.

[20] Daniel Bielser, Volker A. Maiwald, and Markus H. Gross. Interactive
cuts through 3-dimensional soft tissue. In P. Brunet and R. Scopigno,
editors, Computer Graphics Forum (Eurographics ’99), volume 18(3),
pages 31–38. The Eurographics Association and Blackwell Publishers,
1999.

[21] James F. Blinn. Simulation of wrinkled surfaces. In SIGGRAPH
’78: Proceedings of the 5th annual conference on Computer graphics
and interactive techniques, pages 286–292, New York, NY, USA, 1978.
ACM Press.

[22] David Blythe. The direct3d 10 system. In The Proceedings of ACM
SIGGRAPH, 2006.

[23] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroder. Sparse
matrix solvers on the gpu: conjugate gradients and multigrid. ACM
Trans. Graph., 22(3):917–924, 2003.

[24] Lawrence M. Boxt. Magnetic resonance and computed tomographic
evaluation of congenital heart disease. Journal of Magnetic Resonance
Imaging, 19(6):827–847, June 2004.

[25] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and
minimal surfaces via graph cuts. In ICCV ’03: Proceedings of the
Ninth IEEE International Conference on Computer Vision, page 26,
Washington, DC, USA, 2003. IEEE Computer Society.

[26] P. N. Brett, T. J. Parker, A. J. Harrison, T. A. Thomas, and A. Carr.
Simulation of resistance forces acting on surgical needles. Proceedings
of the Institution of Mechanical Engineers, part H, 211(4):335–347,
1997.

[27] M. Bro-Nielsen, D. Helfrick, B. Glass, X. Zeng, and H. Connacher.
VR simulation of abdominal trauma surgery. Proceedings of Medicine
Meets Virtual Reality. Studies in Health Technology and Informatics,
50:117–123, 1998.

160 BIBLIOGRAPHY

[28] M. Bro-Nielsen, J. L. Tasto, R. Cunningham, and G. L. Merril. PreOp
endoscopic simulator: a PC-based immersive training system for bron-
choscopy. Proceedings of Medicine Meets Virtual Reality VII. Studies
in Health Technology and Informatics, 62:76–82, 1999.

[29] Morten Bro-Nielsen. Finite element modeling in surgery simulation.
Journal of the IEEE, 86(3):490–503, 1998.

[30] Morten Bro-Nielsen and Stephane Cotin. Real-time volumetric de-
formable models for surgery simulation using finite elements and con-
densation. Computer Graphics Forum, 15(3):57–66, 1996.

[31] Joel Brown, Stephen Sorkin, Cynthia Bruyns, Jean-Claude Latombe,
Kevin Montgomery, and Michael Stephanides. Real-time simulation of
deformable objects: tools and application. In Proceedings of the Four-
teenth Conference on Computer Animation, pages 228–258, November
2001.

[32] Pat Brown. Nv_float_buffer. http://www.opengl.org/registry/

specs/NV/float_buffer.txt, 2002.

[33] Pat Brown. Arb_vertex_program. http://oss.sgi.com/projects/

ogl-sample/registry/ARB/vertex_program.txt, September 2004.

[34] Pat Brown. NV_vertex_program3. http://www.nvidia.com/dev_

content/nvopenglspecs/GL_NV_vertex_program3.txt, 2004. Ac-
cessed the 24th of July 2006.

[35] Pat Brown and Mark Kilgard. Gl_nv_vertex_program2. http://

www.opengl.org/registry/specs/NV/vertex_program2.txt, 2002.

[36] Pat Brown and Mark J. Kilgard. NV_fragment_program. http://

www.opengl.org/registry/specs/NV/fragment_program.txt, May
2005. Accessed the 23th of July 2006.

[37] Pat Brown and Eric Werness. NV_fragment_program2.
http://www.nvidia.com/dev_content/nvopenglspecs/GL_NV_

fragment_program2.txt, 2004. Accessed the 23th of July 2006.

[38] Cynthia Bruyns and Mark P. Ottensmeyer. Measurements of soft-
tissue mechanical properties to support development of a physi-
cally based virtual animal model. In MICCAI ’02: Proceedings of
the 5th International Conference on Medical Image Computing and
Computer-Assisted Intervention-Part I, pages 282–289, London, UK,
2002. Springer-Verlag.

[39] Ian Buck, Kayvon Fatahalian, and Pat Hanrahan. Gpubench: Eval-
uating gpu performance for numerical and scientific applications. In

BIBLIOGRAPHY 161

General Purpose Computing on Graphics Processors, ACM Workshop
2004, pages C–20, 2004.

[40] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fa-
tahalian, Mike Houston, and Pat Hanrahan. Brook for gpus: stream
computing on graphics hardware. ACM Trans. Graph., 23(3):777–786,
2004.

[41] Ian Buck, Naga Govindaraju, Mark Harris, Jens Krueger, Aaron
Lefohn, David Luebke, Tim Purcell, and Cliff Woolley. Siggraph 2005
gpgpu course. http://www.gpgpu.org/s2005/, August 2005.

[42] Ian Buck, Aaron Lefohn, Patrick McCormick, John Owens, Tim Pur-
cell, and Robert Strzodka. Ieee visualization 2005 tutorial. http:

//www.gpgpu.org/vis2005/, October 2005.

[43] Ian Buck and Tim Purcell. A toolkit for computation on gpus. In
Randima Fernando, editor, GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics, chapter 37, pages 621–636.
Addison Wesley, 2004.

[44] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In
HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 37–46, Aire-la-Ville, Switzer-
land, Switzerland, 2002. Eurographics Association.

[45] M. Cenk Cavusoglu, Tolga G Göktekin, and Frank Tendick. GiPSi:a
framework for open source/open architecture software development
for organ-level surgical simulation. IEEE Trans Inf Technol Biomed,
10(2):312–322, April 2006.

[46] Cincinatti Children’s Hospital Medical Center. The heart cen-
ter, encyclopedi. http://www.cincinnatichildrens.org/health/

heart-encyclopedia/, April 2006.

[47] Wei Chen, Huagen Wan, Hongxin Zhang, Hujun Bao, and Qunsheng
Peng. Interactive collision detection for complex and deformable mod-
els using programmable graphics hardware. In VRST ’04: Proceedings
of the ACM symposium on Virtual reality software and technology,
pages 10–15, New York, NY, USA, 2004. ACM Press.

[48] Yoo-Joo Choi, Young J. Kim, and Myoung-Hee Kim. Rapid pairwise
intersection tests using programmable gpus. Vis. Comput., 22(2):80–
89, 2006.

[49] Robert L. Cook. Shade trees. In SIGGRAPH ’84: Proceedings of the
11th annual conference on Computer graphics and interactive tech-
niques, pages 223–231, New York, NY, USA, 1984. ACM Press.

162 BIBLIOGRAPHY

[50] Stephane Cotin, Herve Delingette, and Nicholas Ayache. Real-time
elastic deformations of soft tissues for surgery simulation. IEEE Trans-
actions on Visualization and Computer Graphics, 5(1):62–73, 1999.

[51] Stephane Cotin, Herve Delingette, and Nicholas Ayache. A hybrid elas-
tic model allowing real-time cutting, deformations and force-feedback
for surgery training and simulation. The Visual Computer, 16(8):437–
452, 2000.

[52] Stephane Cotin, Christian Duriez, Julien Lenoir, Paul Neumann, and
Steven Dawson. New approaches to catheter navigation for interven-
tional radiology simulation. pages 534–542, Palm Springs, California,
USA, 26-30 october 2005.

[53] Stephane Cotin, Paul Neumann, Hervé Delingette, Cenk Cavu-
soglu, Frank Tendick, Susann Luperfoy, Christophe Chaillou, Philippe
Meseure, Matthias Harders, Emmanuel Promayon, Kenneth Curley,
Harvey Magee, Xunlei Wu, and Kevin Montgomery. Collaborative
development of an open framework for medical simulation. Technical
report, 2004.

[54] Steven Cover, Norberto Ezquerra, James O’Brien, Richard Rowe,
Thomas Gadacz, and Ellen Palm. Interactively deformable models for
surgery simulation. IEEE Comput. Graph. Appl., 13(6):68–75, 1993.

[55] Francois Boux de Casson and Christian Laugier. Modeling the dy-
namics of a human liver for a minimally invasive surgery simulator. In
MICCAI ’99: Proceedings of the Second International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages
1156–1165, London, UK, 1999. Springer-Verlag.

[56] Herve Delingette. Towards realistic soft tissue modeling in medical
simulation. In Proceedings of the IEEE: Special Issue on Surgery Sim-
ulation, pages 512–523, 1998.

[57] Herve Delingette, Stephane Cotin, and Nicholas Ayache. A hybrid elas-
tic model allowing real-time cutting, deformations and force-feedback
for surgery training and simulation. In CA ’99: Proceedings of the
Computer Animation, page 70, Washington, DC, USA, 1999. IEEE
Computer Society.

[58] Chen Ding and Ken Kennedy. The memory bandwidth bottleneck and
its amelioration by a compiler. In IPDPS ’00: Proceedings of the 14th
International Symposium on Parallel and Distributed Processing, page
181, Washington, DC, USA, 2000. IEEE Computer Society.

BIBLIOGRAPHY 163

[59] Jack J. Dongarra. Performance of various computers using standard
linear equations software. Technical Report CS-89-85, University of
Tennessee Computer Science Technical Report, 2006.

[60] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J.
Hanson. An extended set of FORTRAN Basic Linear Algebra Sub-
programs. ACM Transactions on Mathematical Software, 14(1):1–17,
1988.

[61] John Dubinski. The merger of the milky way and andromedia galaxies.
http://www.cita.utoronto.ca/~dubinski/tflops/, January 2001.

[62] Kenny Erleben, Jon Sporring, Knud Henriksen, and Henrik
Dohlmann. Physics-Based Animation. Charles River Media, 2005.

[63] Cass Everitt, Ashu Rege, and Cem Cebenoyan. hardware shadow
mapping. Technical report, Nvidia, 2001.

[64] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the effi-
ciency of gpu algorithms for matrix-matrix multiplication. In HWWS
’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, pages 133–137, New York, NY, USA, 2004.
ACM Press.

[65] Randima Fernando, editor. GPU Gems: Programming Techniques,
Tips, and Tricks for Real-Time Graphics. Addison Wesley, 2004.

[66] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The Defini-
tive Guide to Programmable Real-Time Graphics. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[67] T.G. Flohr, S. Schaller S, K. Stierstorfer, H. Bruder, B.M. Ohne-
sorge, and U.J. Schoepf. Multi-detector row ct systems and image-
reconstruction techniques. Radiology, 235(3):756–773, June 2005.

[68] Gonzalo Frasca. Simulation 101: Simulation versus representa-
tion. http://www.ludology.org/articles/sim1/simulation101.

html, 2001. Accessed the 22nd of July 2006.

[69] M.P. Fried, R. Satava, S. Weghorst, A.G. Gallagher, C. Sasaki D.
Ross, M. Sinanan, J.I. Uribe, M. Zeltsan, H. Arora H, and H. Cuellar.
Identifying and reducing errors with surgical simulation. Quality and
Safety in Healthcare, 13 Suppl 1:i19–i26, October 2004.

[70] Sarah Frisken-Gibson. Using linked volumes to model object collisions,
deformation, cutting, carving, and joining. IEEE Transactions on
Visualization and Computer Graphics, 5(4):333–348, 1999.

164 BIBLIOGRAPHY

[71] Sarah Frisken-Gibson. Volume deformation: Modeling shape changes
in sampled volumes. In Course Notes 41 (Volume Graphics), 1999.

[72] A.G. Gallagher, E.M. Ritter, H. Champion, G. Higgins, M.P. Fried,
G. Moses, C.D. Smith, and R.M. Satava. Virtual reality simulation
for the operating room: proficiency-based training as a paradigm shift
in surgical skills training. Annals of Surg, 241(2):364–372, February
2005.

[73] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh
Manocha. Lu-gpu: Efficient algorithms for solving dense linear systems
on graphics hardware. In SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, page 3, Washington, DC, USA, 2005.
IEEE Computer Society.

[74] Fabio Ganovelli and Carol O’Sullivan. Animating cuts with on-the-fly
re-meshing. In Eurographics 2001, pages 243–247, 2001.

[75] Paul Gasson, Rudy J. Lapeer, and Alf D. Linney. Modelling techniques
for enhanced realism in an open surgery simulation. In IV ’04: Pro-
ceedings of the Information Visualisation, Eighth International Con-
ference on (IV’04), pages 73–78, Washington, DC, USA, 2004. IEEE
Computer Society.

[76] Dominik Göddeke. Gpgpu::tutorials. http://www.mathematik.

uni-dortmund.de/~goeddeke/gpgpu/index.html, May 2006.

[77] Joachim Georgii, Florian Echtler, and Rudiger Westermann. Inter-
active simulation of deformable bodies on gpus. In Simulation and
Visualisation 2005, pages 247–258, March 2005.

[78] Joachim Georgii and Rudiger Westermann. Mass-spring systems on
the gpu. Simulation Practice and Theory, Elsevier Science, July 2005.

[79] Sarah Gibson, Joseph Samosky, and Andrew Mor. Simulating arthro-
scopic knee surgery using volumetric object representations, real-time
volume rendering and haptic feedback. In Proceedings of CVRMed-
MRCAS, pages 369–378, 1997.

[80] Sarah F. Gibson. 3d chainmail: a fast algorithm for deforming volu-
metric objects. In SI3D ’97: Proceedings of the 1997 symposium on
Interactive 3D graphics, pages 149–154, New York, NY, USA, 1997.
ACM Press.

[81] Sarah F. F. Gibson and Brian Mirtich. A survey of deformable mod-
eling in computer graphics. Technical report, Mitsubishi Electric Re-
search Lab., Cambridge„ 1997.

BIBLIOGRAPHY 165

[82] Nolan Goodnight, Cliff Woolley, Gregory Lewin, David Luebke, and
Greg Humphreys. A multigrid solver for boundary value problems us-
ing programmable graphics hardware. In HWWS ’03: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 102–111, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

[83] Mounna Gor, Rory McCloy, Robert Stone, and Anthony Smith.
Virtual reality laparoscopic simulator for assessment in gynaecol-
ogy. BJOG: An International Journal of Obstetrics and Gynaecology,
110(2):181–187, 2003.

[84] P. J. Gorman, A. H. Meier, and T. M. Krummel. Simulation and
virtual reality in surgical education: real or unreal? Archives of Surg,
134(11):1203–1208, November 1999.

[85] Naga K. Govindaraju, Ming C. Lin, and Dinesh Manocha. Quick-
cullide: Fast inter- and intra-object collision culling using graphics
hardware. In VR ’05: Proceedings of the 2005 IEEE Conference 2005
on Virtual Reality, pages 59–66, 319, Washington, DC, USA, 2005.
IEEE Computer Society.

[86] Simon Green. Opengl shader tricks. In Game Developers Conference,
2003.

[87] Simon Green and Mark Harris. Physics simulation on nvidia gpus. In
Game Developers Conference, 2006.

[88] Kim Vang Hansen and Ole Vilhelm Larsen. Using region-of-interest
based finite element modeling for brain-surgery simulation. In MIC-
CAI ’98: Proceedings of the First International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention, pages 305–
316, London, UK, 1998. Springer-Verlag.

[89] Mark J. Harris. General-purpose computation using graphics hardware
webpage. http://www.gpgpu.org, May. Accessed the 14th of July
2006.

[90] Mark J. Harris, William V. Baxter, Thorsten Scheuermann,
and Anselmo Lastra. Simulation of cloud dynamics on graph-
ics hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages
92–101, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association.

[91] Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and Anselmo
Lastra. Physically-based visual simulation on graphics hardware. In

166 BIBLIOGRAPHY

HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 109–118, Aire-la-Ville,
Switzerland, Switzerland, 2002. Eurographics Association.

[92] Dirk Helbing, Illes Farkas, and Tamas Vicsek. Simulating dynamical
features of escape panic. Nature, 407(6803):487–490, September 2000.

[93] Bradley M. Hemminger, Paul L. Molina, Thomas M. Egan, Frank C.
Detterbeck, Keith E. Muller, Christopher S. Coffey, and Joseph K. T.
Lee. Assessment of real-time 3d visualization for cardiothoracic diag-
nostic evaluation and surgery planning. Journal of Digital Imaging,
19:145–153, April 2005.

[94] Johannes Hirche, Alexander Ehlert, Stefan Guthe, and Michael
Doggett. Hardware accelerated per-pixel displacement mapping. In GI
’04: Proceedings of the 2004 conference on Graphics interface, pages
153–158, School of Computer Science, University of Waterloo, Water-
loo, Ontario, Canada, 2004. Canadian Human-Computer Communi-
cations Society.

[95] Richard Holbrey. Virtual Suturing for Training in Vascular Surgery.
PhD thesis, School of Computing, University of Leeds, 2004.

[96] Richard P Holbrey and Andrew J Bulpitt. Metrics and motion analysis
for assessment of surgical skills. Proceedings of Medicine Meets Virtual
Reality 11. Studies in Health Technology and Informatics, 94:124–126,
2003.

[97] Arun Holden. The beating heart of virtual engineering. Scientific
Computing World, Oct/Nov:26–28, 2000.

[98] John Hu, Chu-Yin Chang, Neil Tardella, Janey Pratt, and James En-
glish. Effectiveness of haptic feedback in open surgery simulation and
training systems. Proceedings of Medicine Meets Virtual Reality 14.
Studies in Health Technology and Informatics, 119:213–218, 2006.

[99] Thomas J. R. Hughes. The Finite Element Method - Linear Static and
Dynamic Finite Element Analysis. Dover, 2000.

[100] Children’s Heart Institute. Heart defects: Hypoplastic right ven-
tricle. http://childrensheartinstitute.org/educate/defects/

hypor1.htm, June 2006.

[101] Thomas Jakobsen. Advanced character physics. Technical report,
Gamasutra, 2003.

[102] Jeff Juliano and Jeremy Sandmel. Ext_framebuffer_object.
http://oss.sgi.com/projects/ogl-sample/registry/EXT/

framebuffer_object.txt, 2005.

BIBLIOGRAPHY 167

[103] Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki
Kawakami, Yasuyuki Yanagida, Taro Maeda, and Susumu Tachi. De-
tailed shape representation with parallax mapping. In Proc. ICAT,
pages 205–208, 2001.

[104] Christoph Kaufmann, Scott Zakaluzny, and Alan Liu. First steps in
eliminating the need for animals and cadavers in advanced trauma
life support. In MICCAI ’00: Proceedings of the Third International
Conference on Medical Image Computing and Computer-Assisted In-
tervention, pages 618–623, London, UK, 2000. Springer-Verlag.

[105] Erwin Keeve, Sabine Girod, and Bernd Girod. Craniofacial surgery
simulation. In VBC ’96: Proceedings of the 4th International Confer-
ence on Visualization in Biomedical Computing, pages 541–546, Lon-
don, UK, 1996. Springer-Verlag.

[106] Amy E Kerdok, Stephane M Cotin, Mark P Ottensmeyer, Anna M
Galea, Robert D Howe, and Steven L Dawson. Truth cube: estab-
lishing physical standards for soft tissue simulation. Med Image Anal,
7(3):283–291, September 2003.

[107] Uwe G. Kühnapfel, Christian Kuhn, M. Hübner, H.G. Krumm, and
B. Neisius. Cad-based simulation and modelling for endoscopic
surgery. In Proceedings of MedTech, SMIT‘94,, October 1994.

[108] Mark J. Kilgard. Nv_vertex_program. http://oss.sgi.com/

projects/ogl-sample/registry/NV/vertex_program.txt, Febru-
ary 2004.

[109] David R. Kincaid and E. Ward Cheney. Numerical Analysis : Mathe-
matics of Scientific Computing (3rd). Brooks Cole, 2001.

[110] Dale Kirkland, Pat Brown, Jon Leech, Rob Mace, and Brian Paul.
Arb_texture_float. http://oss.sgi.com/projects/ogl-sample/

registry/ARB/texture_float.txt, 2004.

[111] Jens Krüger and Rüdiger Westermann. Linear algebra operators for
gpu implementation of numerical algorithms. ACM Trans. Graph.,
22(3):908–916, 2003.

[112] Yuri Kryachko. Using vertex texture displacement for realistic water
rendering. In Randima Fernando, editor, GPU Gems 2, chapter 18.
Addison-Wesley, 2005.

[113] Uwe G. Kuhnapfel, Huseyin Kemal Cakmak, and Heiko Maass. En-
doscopic surgery training using virtual reality and deformable tissue
simulation. Computers & Graphics, 24:671–682, 2000.

168 BIBLIOGRAPHY

[114] Aaron E. Lefohn, Shubhabrata Sengupta, Joe Kniss, Robert Strzodka,
and John D. Owens. Glift: Generic, efficient, random-access gpu data
structures. ACM Trans. Graph., 25(1):60–99, 2006.

[115] K.S. Lehmann, J.P. Ritz, H. Maass, H.K. Cakmak, U.G. Kuehnapfel,
C.T. Germer, G. Bretthauer, and H.J. Buhr. A prospective random-
ized study to test the transfer of basic psychomotor skills from virtual
reality to physical reality in a comparable training setting. Ann Surg,
241(3):442–449, March 2005.

[116] DR1 Lægens Bord. Da mikkels hjerte blev sat i stå. 28. apr.
2005 19:30 on the television channel DR1, available on the In-
ternet http://www.dr.dk/DR1/laegen/Programmer/2005/050428/

20050824110522.htm, June 2006.

[117] Benj Lipchak. Arb_fragment_program. http://oss.sgi.com/

projects/ogl-sample/registry/ARB/fragment_program.txt, Oc-
tober 2003.

[118] A. Liu, C. Kaufmann, and T. Ritchie. A computer-based simulator
for diagnostic peritoneal lavage. Proceedings of Medicine Meets Virtual
Reality 2001. Studies in Health Technology and Informatics, 81:279–
285, 2001.

[119] Alan Liu, Christoph Kaufmann, and Daigo Tanaka. An architecture
for simulating needle-based surgical procedures. In MICCAI ’01: Pro-
ceedings of the 4th International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 1137–1144, London,
UK, 2001. Springer-Verlag.

[120] Alan Liu, Frank Tendick, Kevin Cleary, and Christoph Kaufmann. A
survey of surgical simulation: applications, technology, and education.
Presence: Teleoper. Virtual Environ., 12(6):599–614, 2003.

[121] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In SIGGRAPH ’87: Pro-
ceedings of the 14th annual conference on Computer graphics and in-
teractive techniques, pages 163–169, New York, NY, USA, 1987. ACM
Press.

[122] Rob Mace. Ati_texture_float. http://www.opengl.org/registry/

specs/ATI/texture_float.txt, 2002.

[123] J. Harvey Magee. Validation of medical modeling & simulation train-
ing devices and systems. Proceedings of Medicine Meets Virtual Reality
11. Studies in Health Technology and Informatics, 94:196–198, 2003.

BIBLIOGRAPHY 169

[124] Francis T. Makowski and Luciano Mariella. Computer simulation
helps engineers improve ferrari formula one aerodynamics. Technical
report, Fluent Inc., 2001.

[125] Frdric Mazzella, Kevin Montgomery, and Jean claude Latombe. The
forcegrid: A buffer structure for haptic interaction with virtual elastic
objects. In Proceedings. ICRA ’02. IEEE International Conference on
Robotics and Automation, volume 1, pages 939– 946, 2002.

[126] R. McCloy and R. Stone. Science, medicine, and the future. Virtual
reality in surgery. BMJ, 323(7318):912–915, October 2001.

[127] Michael McCool and Stefanus Du Toit. Metaprogramming GPUs with
Sh. AK Peters Ltd, 2004.

[128] U. Meier, O. López, C. Monserrat, M. C. Juan, and M. Alcañiz. Real-
time deformable models for surgery simulation: a survey. Comput
Methods Programs Biomed, 77(3):183–197, March 2005.

[129] Microsoft. Directx developer center. http://msdn.microsoft.com/

directx/. Accessed the 17th of July 2006.

[130] Tomas Moller, Eric Haines, and Tomas Akenine-Moller. Real-Time
Rendering (2nd Edition). AK Peters, Ltd., July 2002.

[131] J. Montagnat, H. Delingette, and N. Ayache. A review of deformable
surfaces: topology, geometry and deformation. Image and Vision
Computing, 19(14):1023–1040, December 2001.

[132] Kevin Montgomery. Enabling technologies in surgical simulation:
When will the future be here. Presented at TATRIC’s third annual
Principal Investigators Review, 2003.

[133] Kevin Montgomery, Cynthia Bruyns, Joel Brown, Stephen Sorkin,
Frederic Mazzella, Guillaume Thonier, Arnaud Tellier, Benjamin Ler-
man, and Anil Menon. Spring: a general framework for collaborative,
real-time surgical simulation. Proceedings of Medicine Meets Virtual
Reality 02/10. Studies in Health Technology and Informatics, 85:296–
303, 2002.

[134] Kevin Montgomery and Cynthia D Bruyns. Generalized interactions
using virtual tools within the spring framework: cutting. Proceedings
of Medicine Meets Virtual Reality 02/10. Studies in Health Technology
and Informatics, 85:79–85, 2002.

[135] Kevin Montgomery and Cynthia D Bruyns. Generalized interactions
using virtual tools within the spring framework: probing, piercing,

170 BIBLIOGRAPHY

cauterizing and ablating. Proceedings of Medicine Meets Virtual Re-
ality 02/10. Studies in Health Technology and Informatics, 85:74–78,
2002.

[136] Kevin Montgomery, LeRoy Heinrichs, Cynthia Bruyns, Simon Wil-
dermuth, Christopher Hasser, Stephanie Ozenne, and David Bailey.
Surgical simulator for hysteroscopy: a case study of visualization in
surgical training. In VIS ’01: Proceedings of the conference on Vi-
sualization ’01, pages 449–452, Washington, DC, USA, 2001. IEEE
Computer Society.

[137] Andrew B. Mor. Progressive cutting with minimal new element cre-
ation of soft tissue models for interactive surgical simulation. PhD
thesis, Robotics Institute, Carnegie Mellon University, 2001. Chair-
Takeo Kanade.

[138] S. Mottl-Link, T. Boettger, J.J. Krueger JJ, U. Rietdorf, B. Schnack-
enburg, P. Ewert, F. Berger, E. Nagel, H.P. Meinzer, A. Juraszek,
T. Kuehne, and I. Wolf. Images in cardiovascular medicine. cast of
complex congenital heart malformation in a living patient. 112:e356–
e357, 2005.

[139] U. Myhre, B.W Duncan, R.B. Mee, R. Joshi, S.G. Seshadri,
O. Herrera-Verdugo, and G.L. Rosenthal. Apical right ventriculo-
tomy for closure of apical ventricular septal defects. Ann Thorac Surg,
78(1):204–208, July 2004.

[140] Megumi Nakao. Cardiac Surgery Simulation with Active Interaction
and Adaptive Physics-based Modeling. PhD thesis, Dept. of Medical
Informatics, Kyoto Univ. Hospital, 2003.

[141] M. P. Nash and P. J. Hunter. Heart mechanics using mathemati-
cal modelling. Proceedings. of the Second New Zealand Postgraduate
Conerence. for Engineering and Technology Students, 1996.

[142] Jean-Christophe Nebel. Soft tissue modeling from 3d scanned data.
In DEFORM/AVATARS, pages 85–97, 2000.

[143] L. P. Nedel and D. Thalmann. Real time muscle deformations using
mass-spring systems. In CGI ’98: Proceedings of the Computer Graph-
ics International 1998, page 156, Washington, DC, USA, 1998. IEEE
Computer Society.

[144] The Canadian Adult Congenital Heart (CACH) Network. Adult
congenital heart disease glossary. http://www.cachnet.org/achd_

index.html, June 2006.

BIBLIOGRAPHY 171

[145] H. W. Nienhuys and A.F. van der Stappen. A Delaunay approach to
interactive cutting in triangulated surfaces, chapter Session II, pages
113–129. Springer-Verlag, 2004.

[146] Han-Wen Nienhuys and A. Frank van der Stappen. A surgery sim-
ulation supporting cuts and finite element deformation. In MICCAI
’01: Proceedings of the 4th International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, pages 145–152,
London, UK, 2001. Springer-Verlag.

[147] OpenTissue. Opensource Project, Physical based Animation and
Surgery Simulation. http://www.opentissue.org.

[148] Steve Owen. A survey of unstructured mesh generation technol-
ogy. http://www.andrew.cmu.edu/user/sowen/survey/. Accessed
on the 24th of July 2006.

[149] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krüger, Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-
purpose computation on graphics hardware. In Eurographics 2005,
State of the Art Reports, pages 21–51, August 2005.

[150] Jin Seo Park, Min Suk Chung, Sung Bae Hwang, Yong Sook Lee,
Dong-Hwan Har, and Hyung Seon Park. Visible Korean human: im-
proved serially sectioned images of the entire body. IEEE Trans Med
Imaging, 24(3):352–360, March 2005.

[151] A. M. Pearson, A. G. Gallagher, J. C. Rosser, and R. M. Satava.
Evaluation of structured and quantitative training methods for teach-
ing intracorporeal knot tying. Surg Endosc, 16(1):130–137, January
2002.

[152] pediheart.org. pediheart.org - practitioners site - double outlet right
ventricle. http://www.pediheart.org/practitioners/defects/

ventriculoarterial/DORV.htm, June 2006.

[153] Matt Pharr, editor. GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison
Wesley, 2005.

[154] G. Picinbono, J. Lombardo, H. Delingette, and N. Ayache. Improving
realism of a surgery simulator: Linear anisotropic elasticity, complex
interactions and force extrapolation. Technical report, INRIA, Octo-
ber 2000.

[155] G. Picinbono, J. Lombardo, H. Delingette, and N. Ayache. Improv-
ing realism of a surgery simulator: Linear anisotropic elasticity, com-

172 BIBLIOGRAPHY

plex interactions and force extrapolation. Journal of Visualization and
Computer Animation, 14(3):147–167, 2002.

[156] Pixar. The RenderMan Interface, V3.1. 1989. PIX 99:1 1.P-Ex.

[157] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A real-time procedural shading system for programmable
graphics hardware. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages
159–170. ACM Press, 2001.

[158] Xavier Provot. Deformation constraints in a mass-spring model to
describe rigid cloth behavior. In Wayne A. Davis and Przemyslaw
Prusinkiewicz, editors, Graphics Interface ’95, pages 147–154. Cana-
dian Human-Computer Communications Society, 1995.

[159] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan.
Ray tracing on programmable graphics hardware. ACM Trans. Graph.,
21(3):703–712, 2002.

[160] R.S. Razavi, D.L. Hill, V. Muthurangu, M.E. Miquel, A.M. Taylor,
S. Kozerke, and E.J. Baker. Three-dimensional magnetic resonance
imaging of congenital cardiac anomalies. Cardiol Young, 13(5):461–
465, October 2003.

[161] J. N. Reddy. Theory of elasticity - supplementary notes. ceprofs.

tamu.edu/jreddy/MEMA601/LectureNotes.pdf, 2003.

[162] Charles Y Ro, Ioannis K Toumpoulis, Robert C Ashton, Tony Jebara,
Caroline Schulman, George J Todd, Joseph J Derose, and James J
McGinty. The LapSim: a learning environment for both experts and
novices. Proceedings of Medicine Meets Virtual Reality 13. Studies in
Health Technology and Informatics, 111:414–417, 2005.

[163] Richerd A. Robb. Biomedical imaging, visualization, and analysis.
Wiley-Liss, 1999.

[164] Randi J. Rost. OpenGL Shading Language. Addison Wesley, 2004.

[165] Martin Rumpf and Robert Strzodka. Using graphics cards for quan-
tized FEM computations. In Proceedings of IASTED Visualization,
Imaging and Image Processing Conference (VIIP’01), pages 193–202,
2001.

[166] Tobias Salb, Jakob Brief, Oliver Burgert, Stefan Haßfeld, and Rüdiger
Dillmann. Haptic based risk potential mediation for surgery simu-
lation. In 1. International Workshop on Haptic Devices in Medical
Application (HDMA), within the scope of CARS conference, 1999.

BIBLIOGRAPHY 173

[167] Tobias Salb, Tim Weyrich, and Rüdiger Dillmann. Preoperative plan-
ning and training simulation for risk reducing surgery. In International
Training and Simulation Conference (ITEC), 1999.

[168] Kenneth Salisbury, Francois Conti, and Federico Barbagli. Haptic ren-
dering: Introductory concepts. IEEE Comput. Graph. Appl., 24(2):24–
32, 2004.

[169] R. M. Satava. Medical virtual reality. The current status of the future.
Proceedings of Healthcare in the Information Age. Studies in Health
Technology and Informatics, 29:100–106, 1996.

[170] Richard Satava. Report on the metrics for objective assessment of
surgical skills workshop. Proceedings of the Telemedicine and Ad-
vanced Technology Research Center (TATRC) 3rd Annual Advanced
Technology Portfolio Review. Available at: www.tatrc.org/website_

mmvr2003/presentations/satava_files/frame.htm, 2003. Ac-
cessed the 11th of July 2006.

[171] Neal E Seymour, Anthony G Gallagher, Sanziana A Roman, Michael K
O’Brien, Vipin K Bansal, Dana K Andersen, and Richard M Satava.
Virtual reality training improves operating room performance: results
of a randomized, double-blinded study. Ann Surg, 236(4):458–63; dis-
cussion 463–4, October 2002.

[172] Mads S Sørensen, Andy B Dobrzeniecki, Per Larsen, Thomas Frisch,
Jon Sporring, and Tron A Darvann. The visible ear: a digital image
library of the temporal bone. ORL J Otorhinolaryngol Relat Spec,
64(6):378–381, 2002.

[173] Thomas Sangild Sørensen, Hermann Körperich, Gerald F Greil,
Joachim Eichhorn, Peter Barth, Hans Meyer, Erik Morre Peder-
sen, and Philipp Beerbaum. Operator-independent isotropic three-
dimensional magnetic resonance imaging for morphology in congeni-
tal heart disease: a validation study. Circulation, 110(2):163–169, July
2004.

[174] Thomas Sangild Sørensen, Erik Morre Pedersen, Ole Kromann
Hansen, and Keld Sorensen. Visualization of morphological details in
congenitally malformed hearts: virtual three-dimensional reconstruc-
tion from magnetic resonance imaging. Cardiol Young, 13(5):451–460,
October 2003.

[175] Stanford University, Computer Graphics Laboratory. Dragon, the
stanford 3d scanning repository. http://graphics.stanford.edu/

data/3Dscanrep.

174 BIBLIOGRAPHY

[176] G. Stellin, M. Padalino, O. Milanesi, M. Rubino, D. Casarotto, P.R.
Van, and P.S. Van. Surgical closure of apical ventricular septal defects
through a right ventricular apical infundibulotomy. Ann Thorac Surg,
69(2):597–601, February 2000.

[177] Robert Strzodka, Michael Doggett, and Andreas Kolb. Scientific com-
putation for simulations on programmable graphics hardware. Simu-
lation Practice & Theory, 13:8:667–680, 2005.

[178] Hariom Sur, Alessandro Faraci, and Fernando Bello. Validation of soft
tissue properties in surgical simulation with haptic feedback. Proceed-
ings of Medicine Meets Virtual Reality 12. Studies in Health Technol-
ogy and Informatics, 98:382–384, 2004.

[179] C. Sutton, R. McCloy, A. Middlebrook, P. Chater, M. Wilson, and
R. Stone. MIST VR. A laparoscopic surgery procedures trainer and
evaluator. Proceedings of Global Healthcare Grid. Studies in Health
Technology and Informatics, 39:598–607, 1997.

[180] G. Székely, C. Brechbühler, R. Hutter, A. Rhomberg, and P. Schmid.
Modeling of soft tissue deformation for laparoscopic surgery simula-
tion. In MICCAI ’98: Proceedings of the First International Confer-
ence on Medical Image Computing and Computer-Assisted Interven-
tion, pages 550–561, London, UK, 1998. Springer-Verlag.

[181] D. Terzopoulos and K. Waters. Analysis and synthesis of facial image
sequences using physical and anatomical models. volume 15, pages
569–579, Washington, DC, USA, 1993. IEEE Computer Society.

[182] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elas-
tically deformable models. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive techniques,
pages 205–214, New York, NY, USA, 1987. ACM Press.

[183] Chris J. Thompson, Sahngyun Hahn, and Mark Oskin. Using mod-
ern graphics architectures for general-purpose computing: a frame-
work and analysis. In MICRO 35: Proceedings of the 35th an-
nual ACM/IEEE international symposium on Microarchitecture, pages
306–317, Los Alamitos, CA, USA, 2002. IEEE Computer Society
Press.

[184] V.T. Tsang, T.Y. Hsia, R.W. Yates, and R.H. Anderson. Surgical
repair of supposedly multiple defects within the apical part of the
muscular ventricular septum. Ann Thorac Surg, 73(1):58–62, January
2002.

BIBLIOGRAPHY 175

[185] M. Ursino, J. L. Tasto, B. H. Nguyen, R. Cunningham, and G. L.
Merril. CathSim: an intravascular catheterization simulator on a PC.
Proceedings of Medicine Meets Virtual Reality VII. Studies in Health
Technology and Informatics, 62:360–366, 1999.

[186] P.S. Van, J.E. Maye Jr, N.B. Berman, M.F. Flanagan, T. Geva,
and P.R Van. Apical ventricular septal defects: follow-up concerning
anatomic and surgical considerations. Ann Thorac Surg, 73(1):48–56,
January 2002.

[187] Loup Verlet. Computer experiments on classical fluids, thermodynami-
cal properties of lennard-jones molecules. Physical Review, 159:98–103,
1967.

[188] Luc Vincent and Pierre Soille. Watersheds in digital spaces: An effi-
cient algorithm based on immersion simulations. IEEE Trans. Pattern
Anal. Mach. Intell., 13(6):583–598, 1991.

[189] Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining
Guo, and Heung-Yeung Shum. View-dependent displacement map-
ping. ACM Trans. Graph., 22(3):334–339, 2003.

[190] R. W. Webster, D. I. Zimmerman, B. J. Mohler, M. G. Melkonian,
and R. S. Haluck. A prototype haptic suturing simulator. Proceedings
of Medicine Meets Virtual Reality 2001. Studies in Health Technology
and Informatics, 81:567–569, 2001.

[191] J. Weickert. Nonlinear diffusion filtering. In B. Jähne, H. Haußecker,
and P. Geißler, editors, Handbook on Computer Vision and Applica-
tions, Vol. 2: Signal Processing and Pattern Recognition, pages 423–
450. Academic Press, 1999.

[192] Wikipedia. Geforce256. http://en.wikipedia.org/wiki/GeForce_

256. Accessed the 14th of July 2006.

[193] Wikipedia. Graphics processing unit. http://en.wikipedia.org/

wiki/Graphics_processing_unit. Accessed the 14th of July 2006.

[194] Wingo Sai-Keung Wong and George Baciu. Gpu-based intrinsic col-
lision detection for deformable surfaces: Collision detection and de-
formable objects. Comput. Animat. Virtual Worlds, 16(3-4):153–161,
2005.

[195] Mason Woo, Davis, and Mary Beth Sheridan. OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

176 BIBLIOGRAPHY

[196] Wen Wu and Pheng Ann Heng. A hybrid condensed finite element
model with gpu acceleration for interactive 3d soft tissue cutting: Re-
search articles. Comput. Animat. Virtual Worlds, 15(3-4):219–227,
2004.

[197] Hugh D. Young, Roger A. Freedman, T. R. Sandin, and A. Lewis Ford.
University Physics. Addison Wesley, 1999.

[198] Cyril Zeller. Cloth simulation on the gpu. In SIGGRAPH application
sketch, July 2005.

[199] Shao-Xiang Zhang, Pheng-Ann Heng, Zheng-Jin Liu, Li-Wen Tan,
Ming-Guo Qiu, Qi-Yu Li, Rong-Xia Liao, Kai Li, Gao-Yu Cui, Yan-
Li Guo, Xiao-Ping Yang, Guang-Jiu Liu, Jing-Lu Shan, Ji-Jun Liu,
Wei-Guo Zhang, Xian-Hong Chen, Jin-Hua Chen, Jian Wang, Wei
Chen, Ming Lu, Jian You, Xue-Li Pang, Hong Xiao, and Yong-Ming
Xie. Creation of the Chinese visible human data set. Anat Rec B New
Anat, 275(1):190–195, December 2003.

[200] János Zátonyi, Rupert Paget, Gábor Székely, Markus Grassi, and
Michael Bajka. Real-time synthesis of bleeding for virtual hys-
teroscopy. Med Image Anal, 9(3):255–266, June 2005.

