
GPU Accelerated Surgical Simulators for Complex Morphology

Jesper Mosegaard* MSc
Department of Computer Science

University of Aarhus, Denmark

Thomas Sangild Sørensen† MSc, PhD
Centre for Advanced Visualization and Interaction

University of Aarhus, Denmark

ABSTRACT
Surgical training in virtual environments, surgical simulation in
other words, has previously had difficulties in simulating
deformation of complex morphology in real-time. Even fast
spring-mass based systems had slow convergence rates for large
models. This paper presents two methods to accelerate a spring-
mass system in order to simulate a complex organ such as the
heart. Computations are accelerated by taking advantage of
modern graphics processing units (GPUs). Two GPU
implementations are presented. They vary in their generality of
spring connections and in the speedup factor they achieve.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture - Graphics Processors; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - Animation; I.3.5
[Computer Graphics]: Computational Geometry and Object
Modeling - Physically based modeling; J.3 [Life and Medical
Sciences]: Life and Medical Sciences - Health.

Keywords: Surgical simulation, Congenital heart disease, Spring
mass systems, GPU, GPGPU

1 INTRODUCTION
Surgical simulators have the potential to improve the training of
surgeons by presenting training scenarios in a virtual reality
environment [1]. In this environment the surgeon can practice
without the risks and the time pressure associated with real
surgery. The surgeon is allowed to experiment and fail, learning
from these experiences. A simulator is built around generalized
anatomical models or alternatively it presents patient specific
models for rehearsal of individual procedures. In the context of
this paper we define surgical simulation as the calculation and
visualization of tissue deformation in response to surgical tools
interacting with parts of a virtual organ. We want to visualize this
deformation in real-time, as well as make incisions in real-time.

Many methods of simulating deformation have been proposed
previously [2]. One of these, the spring-mass model, is a
physically based model often used in real-time surgical simulators
[3]. In some areas of surgical simulation a high degree of
morphological detail must be preserved to represent the involved
organ(s) accurately. One such example is surgery on congenital
heart defects. In spring-mass based systems such complex models
have previously exhibited slow convergence to equilibrium. The
simulation in these cases has been unrealistically slow.

The Graphics Processing Unit (GPU) is a programmable

parallel processor capable of processing vertices and fragments in
parallel. The GPU is designed to perform graphics rendering
starting from geometric primitives and ending with pixel coloring.
Recently the GPU has become programmable to a degree that
makes it useful for general-purpose computation [4].

In this paper we present two spring-mass implementations
solved entirely on the GPU. The purpose is to achieve a
considerable speedup compared to existing CPU implementations
due to the parallel processing capabilities of modern GPUs. Such
acceleration could then be used to increase the convergence rate
of the simulation and to increase the complexity of the simulated
morphology.

Previously, simple spring-mass systems have been implemented
on the GPU (e.g. [5]). However, they have been limited to simple
shapes and primitive interaction. Necessary but slow data transfer
from the GPU to the CPU has previously been a bottleneck when
handling interaction and visualization. With the recent generation
of GPUs (Geforce 6800, Nvidia, USA) simulation, interaction,
and visualization can now be performed primarily on the GPU.
The driving force of the presented implementations was the
development of a surgical simulator (Figure 1) for complex
interventions in congenitally malformed hearts [6][7]. Hence we
apply the accelerated simulation on a pig heart derived from CT
imaging data. The approach however is general and can be
applied to other organs directly. The GPU used was a Geforce
6800, but the approach should work on any graphics card
supporting shader model 3.0 features.

2 METHODOLOGY

2.1 The Spring-Mass Model
The spring-mass model is an often-used physically based model
for surgical simulation when real-time behavior is desired. It is a
discrete model of particles (with mass) and springs connecting
these. Particles move in space according to Newton's second law

Figure 1. This picture shows the setup with styluses and the

virtual environment for training surgical procedure in
congenital cardiac surgery.

*e-mail: mosegard@daimi.au.dk
† e-mail: sangild@cavi.dk

IEEE Virtual Reality 2005
March 12-16, Bonn, Germany
0-7803-8929-8/05/$20 ©2005 IEEE

147

Please see the color plate on page 323.

of motion constrained by springs, which connect pairs of particles.
For a linear spring-mass model with damping the position of each
particle xi with mass mi is given by the following 2nd order
differential equation:
 ∑ ++−=

j iijiiii fgxyxm &&& (1)

where yi is the damping factor and fi is the external forces. gij is the
force vector defined by spring stiffness kij, spring rest length lij
and particle positions xi and xj as:

ji

ji
jiijijij

xx

xx
xxlkg

−

−
−−=)(

2
1 (2)

Since gij= -gji , the computational cost can be minimized by
evaluating the forces of each spring once, and adding this term to
the summed forces of the connected particles. This system of
differential equations can be solved by standard numerical
integration schemes. One such method is Verlet integration [8] in
which the particle positions at the subsequent time-step can be
calculated as:
 2)()()(2)(htxhtxtxhtx &&+−−=+ (3)

2.2 Parallel Computation of the Spring-Mass System
The GPU can in many ways be regarded as a shared memory
parallel architecture, although with many limitations. We will
begin by some considerations on the design of a simple parallel
algorithm to solve a spring-mass system on a shared memory
architecture. Fortunately the solution to (1) is straightforward to
parallelize and solve iteratively. Processor Pi is responsible for
updating information regarding particle xi. At each time-step and
for each particle the following must be done: Calculate spring
forces based on the distance to neighboring particles and
numerically integrate to calculate the new position of particle xi.

Through the shared memory architecture, processor Pi can
retrieve the current position of all particles for force calculation.

2.3 GPU Pipeline
When rendering a geometric primitive the vertex information is
processed by a programmable vertex shader. Vertices are
transformed and per vertex information is interpolated and
transferred to the programmable pixel shader. The pixel shader
processes this information as well as additional input in the form
of textures to compute the final coloring of a fragment (a
generalized pixel).

 If we regard each fragment as a representation of a particle
position we can design fragment programs to solve (1). An off-
screen rendering buffer (PBuffer) is used to store the calculated

positions. Each position in the PBuffer maps uniquely to the
position of one particle. Each component of each particle position
xi = (x, y, z) is represented as a 32-bit floating point value in the
red, green and blue part of a pixel through OpenGL float-buffer
related extensions. A PBuffer can be bound either as the rendering
target or as a texture. Reading from textures and writing to the
rendering target implements shared memory in fragment
programs. The PBuffer containing positions will in the remaining
paper be referred to as the position texture.

2.4 Integration loop on the GPU
The basic loop for integration is as follows. At any given time-
step of the simulation, activate a dedicated fragment program by
rendering a single quad covering the entire PBuffer. In this
program, let the supplied texture coordinates implicitly provide
particle positions through lookups in the position texture. The
texture coordinates are given at the vertices of the quad and
automatically interpolated throughout all fragments. A one-to-one
mapping of the PBuffer between the input texture and output
buffer is then established.

The choice of the numerical integration method is influenced by
the properties of the fragment program’s input and output. Verlet
integration is well suited for our GPU implementation since
calculations of future positions depend exclusively on the
previous two positions. The two previous particle positions can be
provided as input through textures. These textures are available
from previously written PBuffers. Verlet integration result is only
one vector, the position, and consequently conserves bandwidth
compared to numerical integration resulting in more than one
vector. Furthermore, the Verlet method is inherently stable at
large time-steps, a desirable property for a real-time application.

2.5 Spring-Mass Simulation on the GPU
In this section we explain in detail two spring-mass
implementations for the GPU. The first method represents spring
connections explicitly, while particles in the second method are
connected implicitly based on their location in a three dimensional
grid. The explicit method allows the most freedom in representing
spring connections and particle locations at the cost of some
simulation speed compared to the implicit alternative.

2.5.1 A Spring-Mass System with Explicit Connections
In a general spring-mass model every particle can be arbitrarily
connected to other particles with no special order assumed. We
encode this spring connectivity in a floating point texture, in the
following referred to as the connectivity texture (Figure 3). This
connectivity texture defines for each particle pi a list of springs to

Figure 2. Part of the pig heart position texture containing 42.745 particles.

148

particles pj by storing 1) the texture coordinate in the position
texture of each particle pj and 2) the rest length lij and stiffness kij
The connectivity texture remains constant as long as no changes
in particle connectivity are made. From an element of the
connectivity texture a texture lookup provides the neighboring
particle position xj. By iterating over all springs connected to
particle pi it is possible to calculate (2). If a node has less than the
maximum number of neighbors, the spring rest length or stiffness
can be set to 0 to indicate that a given element of the connectivity
texture should not be considered.

Note that the spring forces will be calculated twice (with
different sign), from each particle connected to it. We have chosen
not to take advantage of the fact that gji = -gij, as it would require a
second pass. Additional information would also have to be given
to each fragment to indicate the sign of the force of a given spring.

2.5.2 A Spring-Mass System with Implicit Connections
A potentially limiting factor of the approach of explicit
connections is the intense use of texture lookups to retrieve the
positions of neighbor particles. What if the texture coordinates of
neighbors could be given directly as input to the fragment
program to enable a single texture lookup to retrieve neighbor
positions? Using interpolated texture coordinates to index
neighbors is possible if particles are fixed in a regular three-
dimensional grid. Particles are then regarded as connected if they
are neighbors in the grid. There is no explicit connectivity texture
as in the previous method. We chose to connect each particle to
18 neighbors as depicted in Figure 4 to constrain both shear and
structural changes.

h

w

d

s1

s1 s2

sd

…

… sd-1

h

w
Figure 5. The flat 3d-texture approach. The 3D volume of voxels

is mapped to a 2d texture by laying out each of the d slices of
size h·w in the 2d texture one after another. The slices are

padded with elements containing unique alpha values of zero
to detect the volume borders.

As stated previously, fragment programs are run in response to
geometry being rendered. For this to happen in the case of
particles in a 3d-grid, we defined a mapping to a 2d PBuffer. This
mapping is based on the flat-3d texture method [9]. Beginning
with the bounding cube of the 3d-grid, we define slices through
the depth of the cube. These slices are mapped consecutively to
the 2d texture (Figure 5). For an example of a position texture
based on the flat-3d approach see Figure 2.

Texture coordinates indicate the locations of neighbouring
particles in the position texture. The coordinates are fixed offsets
from the fragment positions and are given at vertices of the
rendered quads. Interpolation ensures that all fragments get the
correct offset to connected particles in relation to their own
position. Figure 6 depicts this process. The 18 texture locations of
neighbors plus the location of the particle itself are given through
8 texture coordinates (with 8·4=32 values). Identical components
of neighbor locations can be reused. To handle border cases
correctly when laying out in several rows, it is necessary to render
five quads as illustrated in Figure 6. Texture coordinates take into
account the wrapping and will ensure correct neighbor relations.
Neighbors within a slice are addressed by offsetting the fragment
position by ±1 along the width or height of the texture. Particles
on the border of a slice are not intended to be connected to the
neighbors, though. To alleviate this problem we pad the slices
with inactive particles that we do not seek to process, notice the
padding in Figure 5. We define inactive particle fragments to have
an alpha value of zero. This value is detected in the fragment
program, and the calculation skipped for the associated springs.

Neighbors between slices are addressed by furthermore
offsetting with either w+1 or –(w+1) to reach a neighbor in the
previous and next slice respectively.

2: lookup tex-coords

1: lookup neighbors

Connectivity Texture Position Texture

w·maxConnections

maxConnections

h h

w

Figure 3. Layout of the connectivity texture. For a fragment (x,y)

in the position texture, the connectivity texture contains the
texture-coordinates of neighbors in coordinates
(x·maxConnections , y) to ((x+1)· maxConnections , y).

 a) b)

Figure 4. Particle connectivity in a 3D grid. Each particle a) is
connected to 18 neighbors b).

a) b)

Figure 6. Vertex texture coordinates for neighbor positions. For
clarity we will only show two of the 18 possible texture

coordinates. a) depicts the five quads rendered to ensure
correct wrapping. The texture coordinate pointing to the
neighbor directly below in depth is shown for the top-left

vertex. b) shows the four texture coordinates given with all
quads for the right neighbor.

149

By this implicit connectivity gij in (2) can be determined using
only 1 texture lookup per neighbor instead of 2 per neighbor as
was the case in the explicit method. Furthermore we have fixed
the possible rest lengths to all neighbors to either 1 or √2. We can
hereby simplify the force computation somewhat if we assume all
stiffness coefficients kij to be equal to the constant k:

()

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−

−

−

+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

−

−

=

−

−
−−=

∑∑

∑∑

∑∑

∈∈

∈∈

22

11

2
2
1

2
1

Dj
ji

Dj ji

ji

Dj
ji

Dj ji

ji

j ji

ji
jiijij

j
ij

xx
xx

xx

xx
xx

xx

k

xx

xx
xxlkg

 (4)

D1 is the set of neighbor particles with rest length 1 and D2 is the
set of neighbor particle with rest length √2. Using this expression
as the basis for the fragment programs saves instructions. Equally
important we have a sum of unit-vectors, which we can later use
to calculate normals after deformation.

Naturally, a cube of connected particles does not constitute a
flexible shape. To support complex morphology we recognize that
arbitrary fragments can be inactive particles by setting their alpha
value to zero (as in the case of the padding). Within the resolution
of the grid, any morphology can be modeled in this fashion.
Unfortunately the size of the position texture has at least the
number of elements as the bounding cube surrounding the model.
A vast majority of fragments are potentially inactive particles.
They are processed automatically however, since they are
positioned within a rendered quad. Even though we can detect
these particles in the fragment programs, there is some overhead
involved in doing so. To overcome this problem we initially
“fuse” an image of the model in the OpenGL depth buffer once,
and set up a depth-buffer test to fully eliminate processing
inactive particles.

2.6 Visualization and Approximate Normals
In the previous sections we have presented two methods to
calculate the particle positions on the GPU. The next step is to
visualize the result. This has two aspects: How to construct and
render a surface model of the morphology, and how to deform this
surface based on the newly calculated particle positions.

 A surface model is reconstructed with the marching cubes
algorithm [10]. Next we define a mapping from each surface
vertex to one particle in the spring-mass system. With this
mapping the issue of deforming the surface is reduced to
transferring the calculated particle positions to the related surface
vertices. We cannot simply read back the particle positions to the
CPU and set vertex positions accordingly, as this would be a
major performance bottleneck. Instead we utilize a new feature in
the Vertex Shader 3.0 design: texture lookups in vertex programs.
The position of each surface vertex to be rendered is found by a
texture lookup in the position texture. To render the model we
initially set up a display-list, which renders the surface geometry
at its original rest positions. We pass one texture coordinate per
vertex to provide the coordinates to lookup in the position texture.
A vertex program then fetches the most recent particle position,
does basic transformation and outputs the deformed position.

An important issue in this visualization is the calculation of
surface normals when shading the surface. In a conventional CPU
application one would often approximate vertex normals by
averaging the adjacent face normals. Face normals are found by
reading the positions of nodes making up the face and calculating

the normal of the plane. In the presented GPU approaches to a
spring-mass system we do not have the necessary surface
information to simply reuse the CPU approach. Still it is not an
option either to read back the position texture each frame due to
performance reasons; the calculation of normals must take place
on the GPU. In [11] a general method for the calculation of
normals for discrete surfaces is presented. Our approach is
approximate but simple and fits elegantly with the way we
calculate forces. We approximate the normals by the normalized
sum of the unit vectors pointing from neighbors to the particle in
question (Figure 7):

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−
= ∑

j ji

ji
i

xx

xx
normalizen (5)

Since we already computed the sum of the unit vectors in the
force calculations, we only need to normalize this vector and save
it. This approximation gives us well behaving normals almost for
free. We pack the 3-tuple normal into the 32 bit alpha channel of
the fragment. The normal is read by the visualization vertex
program and send to the fragment program for per pixel lightning.
To add shading details we normal-map the rendered geometry
based on a reconstructed model with a very high level of detail
(Melody, Nvidia, USA).

2.7 Interaction
To interact with the simulation the system uses two Polhemus
Fastrak styluses with two buttons each (Figure 1). Each stylus
provides position and orientation of the instruments in space. We
support three modes of interaction; probing, grabbing and cutting.
The main issue in all these interaction methods is to avoid
communication between the CPU and GPU every frame, as this
will introduce a bottleneck in the application.

2.7.1 Probing
When probing, all particles seek to remove themselves from the
volume of space covered by the interaction instrument. Currently
our probing tools are represented as spheres. The fragment
program calculates intersection and intersection response. Every
fragment simply checks if the particle is inside a globally defined
set of spheres. If this is the case the particle is projected to the
sphere surface.

2.7.2 Grabbing
All particles have a state indicating whether they are grabbed or
not. When the grab-button is pressed all particles are checked for
intersection with a bounding sphere of the grabbing tool. If a
particle is intersected the state of the particle is changed to
‘grabbed’. When particles are grabbed, they will set their position

a) b)

Figure 7. A 2d example of normals calculated on the basis of
unit-vectors from neighbors. a) the original geometry. b) the

deformed geometry.

150

relative to the center of the grabbing device for as long as the
grab-button is active.

We have chosen to resolve the grab state of particles on the
CPU. When the grab-button is pressed we do a read-back of the
position texture once. The CPU knows which particles are
grabbed and what their positions should be relative to the
interaction device. This information is rendered back into the
position texture after the integration, overwriting that calculated
position, and before cycling of the PBuffers. When the grab-
button is released the additional rendering is no longer necessary.
Since the position texture is only read back at the beginning of a
grab there is no noticeable slowdown in the simulation. The final
result is that grabbed particles will move relative to the interaction
device and neighboring particles will follow due to the springs
connecting these particles.

 It is possible to handle grabbing entirely on the GPU. This
leads to more fragment operations per simulation iteration
however, and results in lower simulation rates.

2.7.3 Cutting
A cutting action defines an incision in the spring-particle
connections, removing or altering connections so that there are no
structural constraints across the incision. The geometry should
furthermore follow the incision as closely as possible.

Since the surface faces are not directly represented in the
fragment programs for the spring-mass computations, updating
the surface geometry is done on the CPU with up-to-date nodal
positions. Before each cutting procedure the position texture is
read back to the CPU once. Collision detection can be done on the
CPU or GPU [12] but collision response in the form of structural
changes is handled on the CPU.

When using explicit connections, cutting is simply a transfer of
CPU based cutting schemes [13] since we represent both particles
and springs. Structural changes can be propagated to the GPU by
simply writing into the position texture and connectivity texture.
When using implicit connections we have no representation of
springs and we cannot insert particles between other particles. A
simple cutting scheme would erase particles and hereby the
springs connecting the particle to its neighbors. This can be
accomplished by writing an alpha value of zero into the fragments
corresponding to the particles we wish to erase. This will mark the
fragments as an inactive particles. The incision would then be at

least as wide as the length of two relaxed springs. We propose
instead a method of cutting in the implicit model that improves
the granularity; we instead erase individual springs. To erase a
spring we render a special fragment-sized quad at the position of
the two associated fragments. The fragment program is
unchanged. We erase springs by giving the value of zero for those
texture coordinates (out of the 18) related to erased springs. A
zero texture coordinate results in reading the texture padding and
consequently indicates that there is no connection. This approach
of cutting results in a growing number of quads rendered
proportional to the number of erased springs. In many simulations
the number of quads will not grow excessively however.

3 RESULTS
This section presents performance measures of the described GPU
spring-mass systems and compares them to a CPU
implementation. The GPU based spring-mass systems were
implemented in CG, OpenGL arbfp1 (including
fragment_program2 features) as well as Visual Studio .net 2003
C++. The CPU spring-mass system used for comparison is a pure
CPU implementation of the spring mass system with implicit
connections. The system was implemented in Visual Studio .net
2003 C++ and compiled with all optimization flags set and
optimized for speed. The tests were run on a Pentium IV 3GHz
machine with a Gainward Geforce 6800 Ultra graphics card.

As a case study for the GPU-based surgical simulator we
extended the Cardiac Surgery Simulator [7] to support the GPU
spring-mass model (Figure 8). The morphology is based on CT-
images of a pig heart. The CT-data consists of 400x400x395
voxels in isotropic resolution of 0.6 mm in all axes. From the
high-resolution dataset we resampled a reduced resolution dataset
of 100x100x100 voxels. The low resolution dataset was used in a
marching cubes reconstruction of one surface geometry and to
create a regular grid of particles for the spring-mass simulation. If
a voxel in the low resolution dataset indicated tissue, we created a
particle at that location in the regular 3d-grid of particles. In total,
this provided 42.745 particles (Figure 2). The surface
reconstructed with the marching cubes algorithm consists of
31.320 faces. To add further visual detail from the high resolution
CT-dataset we calculated a normal-map from a 630.000 polygon
reconstruction of the high resolution CT-dataset. The simulator

a) b)

Figure 8. A Pig heart consisting of 42.745 particles in a regular grid reconstructed from a CT data set. a) original geometry b) deformed by
grabbing.

151

was set-up to do four simulation iterations per visualization frame.
In this setup the simulator was able to run at 47 frames per
second. With four simulation iterations per frame this corresponds
to 188 iterations of the simulation per second. Figure 8 shows
deformation of the morphology while Figure 9 shows cutting. We
furthermore refer to the accompanying video for a demonstration
of the system.

Performance results for different sizes of GPU spring-mass
systems in comparison with the CPU implementation are reported
in Figure 10 and Table 1. Performance results for the implicit
GPU cutting are reported in Figure 11.

4 DISCUSSION
As can be seen from Table 1 and Figure 10 the GPU clearly
outperforms the CPU in computation of a spring-mass system.

Comparing the implicit GPU method to the CPU implementation
we have a speedup of up to a factor 30. The GPU achieves this
computational speedup since we successfully expressed the
spring-mass algorithm in the language of the very specialized
fragment processor. The GPU method with explicit connections
runs at about half the speed of the implicit method. There is
clearly a trade-off between speed and the generality of
connectivity in the spring-mass system.

With a GPU implementation of the spring-mass system we use
the GPU hardware for both visualization and calculation of
deformation. It is important to realize that this will not slow down
visualization overall compared to a CPU implementation. On the
contrary it might be faster; The GPU implementations render the
surface geometry through display lists allowing for GPU caching
of the geometry. A CPU implementation cannot use this technique
because new vertex positions are calculated every frame, and
these need to be send to the GPU.

With the increased number of iterations available per second,
we can achieve faster convergence when simulating physically
based deformable geometry. We can iterate several times in the
simulation loop before rendering the result to the screen, still in

Figure 9. Cutting in the implicit model. The incision is as wide as the rest length of the springs.

Table 1. Performance comparison for the CPU, Explicit Connections
GPU and Implicit Connections GPU. In the 2nd , 3rd and 4th

column we present iterations per second. GPU/CPU columns
present the GPU speedup in comparison to the CPU.

Nodes /
method

CPU Implicit
GPU

Implicit
GPU /
CPU

Explicit
GPU

Explicit
GPU /
CPU

10.000 45,8 839,8 18,7 457,1 10,2
20.000 20,2 476,9 23,6 234,4 11,6
40.000 9,9 264,6 26,9 121,0 12,3
50.000 7,8 218,0 28,1 99,0 12,7
100.000 3,3 104,1 31,4 48,5 14,6

GPU/CPU comparison

0

200

400

600

800

1000

1200

1400

2500 10000 17500 25000 32500 40000 47500

number of nodes

si
m

ul
at

io
n

ite
ra

tio
ns

 /
se

c.

GPU implicit
GPU explicit
CPU

Figure 10. The GPU spring-mass systems in comparison to a CPU

implementation.

152

real-time. Furthermore we can achieve greater stability and
precision of the numerical methods by using smaller time-steps
than previously. Finally, the added computational power could
also be used to process larger geometries with added degree of
detail, enabling more realistic surgical simulations.

If we consider a standard spring-mass implementation, there are
many improvements that can accelerate the simulation on the
CPU. These might, however, not be easily ported to the GPU.
Hence, the presented speedup is not to be interpreted as a speedup
compared to the fastest CPU implementation available.

The performance of the Cardiac Surgery Simulator in the
reported case study resulted in real-time visualization and fast
convergence of the deformed tissue. The geometry was
furthermore detailed enough to represent the complex morphology
to a higher degree than previously. For this kind of surgical
simulation the growing number of quads rendered to support
incisions is a minor performance issue since using few and small
incisions is a primary goal. The granularity of cuts in the implicit
method is not a big problem for the incisions in the heart since
these are large compared to the detail of the spring-mass system.

4.1 Perspectives
As a next step in the range of interaction modalities, future
research will investigate how the GPU implementation of the
spring-mass algorithm can effectively support suturing.

In this paper we defined a simple mapping between surface
geometry and the underlying spring-mass simulation. When
texture lookups in vertex programs eventually support
interpolation of the texture values, more advanced mappings are
possible. The visible geometrical surface might then become more
detailed than the underlying simulation but still deform based on
the simulated particles. Additionally, when surface vertices
become detached from the particle positions, we can also split the
cutting operation in two: The cutting of the particle system and
the cutting of the surface geometry. This would enable us to
visualize very detailed cuts controlled by a less detailed particle
system.

In cases where the spring-mass model is not considered
adequate, other physically based models of deformation could be
ported to the GPU following the principles of this paper. A Finite
Element Model could be implemented as a dynamic simulation in
much the same way as the spring mass model, but requiring a
larger number of neighbor lookups as well as neighbor dependent
stiffness coefficients.

It would also be very interesting to look into the possibilities of
automatic level of detail in the spring-mass simulation using

hardware accelerated linear interpolation of texture lookups. Such
a representation would probably include some hierarchical
representation of particles on the GPU, and could possibly be used
as an acceleration structure for intersection tests without the
transfer of data to the CPU.

We have successfully implemented an accelerated surgical
simulation on the GPU. Running the GPU based simulation does
not utilize the CPU fully though. When the communication
between the CPU and GPU becomes faster, i.e. through the PCI-
express standard, the CPU and GPU should work more closely
together on the computational problems. It will become important
to identify which problems are best suited for the graphics
processing unit and which are well suited for the central
processing unit.

4.2 Acknowledgements
We acknowledge Vibeke Hjortdal, MD and Ole Kromann Hansen,
MD for clinical support and guidance throughout the development
of the surgical simulation. For the data acquisition we
acknowledge the contributions of Dr. Gerald Greil, University of
Tübingen, Germany as well as Dr. T. Flohr and Dr. I. Wolf.

REFERENCES
[1] Richard M. Satava. Accomplishments and challenges of surgical

simulation. Surg Endosc;, 15(3), pp 232-41, 2001.
[2] Sarah F. F. Gibson and Brian Mirtich. A Survey of Deformable

Modeling in Computer Graphics, MERL Technical Report, TR97-
19, 1997

[3] Kevin Montgomery, et al. Spring: A General Framework for
Collaborative, Real-time Surgical Simulation. Medicine Meets
Virtual Reality 11, pp 23-26, 2002.

[4] Chris J. Thompson , Sahngyun Hahn and Mark Oskin. Using modern
graphics architectures for general-purpose computing: a framework
and analysis. Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture., pp 306—317, 2002.

[5] Simon Green. OpenGL Shader Tricks. Game Developers
Conference, 2003.

[6] Thomas S. Sørensen, Erik M. Pedersen, Ole K. Hansen, Keld
Sørensen. Visualization of morphological details in congenitally
malformed hearts. Cardiol Young; 13(5), pp 451-60, 2003.

[7] Jesper Mosegaard. LR-spring-mass model for cardiac surgical
simulation. Medicine Meets Virtual Reality 12, pp 256-258, 2003.

[8] Loup Verlet. Computer Experiments on Classical Fluids. I.
Thermodynamical. Properties of Lennard-Jones Molecules. Physical
Review, Vol. 159, pp 98–103, 1967.

[9] Mark J. Harris, William V. Baxter III, Thorsten Scheuermann and
Anselmo Lastra. Simulation of Cloud Dynamics on Graphics
Hardware. Proceedings of Graphics Hardware, pp 92-101, 2003.

[10] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,
Computer Graphics (Proceedings of SIGGRAPH '87), Vol. 21, No.
4, pp. 163-169, 1987.

[11] Grit Thürmer & Charles A. Wüthrich. Normal Computation for
Discrete Surfaces in 3D Space. Eurographics 97. Volume 16 (1997),
Number 3, pp 15-26.

[12] Naga Govindaraju, Stephane Redon, Ming C. Lin and Dinesh
Manocha. CULLIDE: Interactive Collision Detection Between
Complex Models in Large Environments using Graphics Hardware ,
ACM SIGGRAPH/Eurographics Graphics Hardware, pp 25-32,
2003.

[13] Han-Wen Nienhuys and A. Frank van der Stappen. A Surgery
Simulation Supporting Cuts and Finite Element Deformation,
Medical Image Computing and Computer-Assisted Intervention, pp
153-160, 2001.

Implicit cutting

0

10

20

30

40

50

0 5 10 15 20
Percentage of particles in cut

Ff
ra

m
es

 /
se

c.

Figure 11. For the implicit method we proposed a cutting scheme

that rendered additional quads to exclude individual springs.
This graph shows the relationship between the size of the cut
as percentage of the whole geometry of 42.745 particles and
the frame rate. The frame-rate is for rendering the pig heart

morphology with four iterations of simulation per visualization.

153

