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ABSTRACT 
Surgical training in virtual environments, surgical simulation in 
other words, has previously had difficulties in simulating 
deformation of complex morphology in real-time. Even fast 
spring-mass based systems had slow convergence rates for large 
models. This paper presents two methods to accelerate a spring-
mass system in order to simulate a complex organ such as the 
heart. Computations are accelerated by taking advantage of 
modern graphics processing units (GPUs). Two GPU 
implementations are presented. They vary in their generality of 
spring connections and in the speedup factor they achieve. 
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1 INTRODUCTION 
Surgical simulators have the potential to improve the training of 
surgeons by presenting training scenarios in a virtual reality 
environment [1]. In this environment the surgeon can practice 
without the risks and the time pressure associated with real 
surgery. The surgeon is allowed to experiment and fail, learning 
from these experiences. A simulator is built around generalized 
anatomical models or alternatively it presents patient specific 
models for rehearsal of individual procedures. In the context of 
this paper we define surgical simulation as the calculation and 
visualization of tissue deformation in response to surgical tools 
interacting with parts of a virtual organ. We want to visualize this 
deformation in real-time, as well as make incisions in real-time.  

Many methods of simulating deformation have been proposed 
previously [2]. One of these, the spring-mass model, is a 
physically based model often used in real-time surgical simulators 
[3]. In some areas of surgical simulation a high degree of 
morphological detail must be preserved to represent the involved 
organ(s) accurately. One such example is surgery on congenital 
heart defects. In spring-mass based systems such complex models 
have previously exhibited slow convergence to equilibrium. The 
simulation in these cases has been unrealistically slow.  

The Graphics Processing Unit (GPU) is a programmable 

parallel processor capable of processing vertices and fragments in 
parallel. The GPU is designed to perform graphics rendering 
starting from geometric primitives and ending with pixel coloring. 
Recently the GPU has become programmable to a degree that 
makes it useful for general-purpose computation [4]. 

In this paper we present two spring-mass implementations 
solved entirely on the GPU. The purpose is to achieve a 
considerable speedup compared to existing CPU implementations 
due to the parallel processing capabilities of modern GPUs. Such 
acceleration could then be used to increase the convergence rate 
of the simulation and to increase the complexity of the simulated 
morphology. 

Previously, simple spring-mass systems have been implemented 
on the GPU (e.g. [5]). However, they have been limited to simple 
shapes and primitive interaction. Necessary but slow data transfer 
from the GPU to the CPU has previously been a bottleneck when 
handling interaction and visualization. With the recent generation 
of GPUs (Geforce 6800, Nvidia, USA) simulation, interaction, 
and visualization can now be performed primarily on the GPU. 
The driving force of the presented implementations was the 
development of a surgical simulator (Figure 1) for complex 
interventions in congenitally malformed hearts [6][7]. Hence we 
apply the accelerated simulation on a pig heart derived from CT 
imaging data. The approach however is general and can be 
applied to other organs directly. The GPU used was a Geforce 
6800, but the approach should work on any graphics card 
supporting shader model 3.0 features. 

2 METHODOLOGY 

2.1 The Spring-Mass Model 
The spring-mass model is an often-used physically based model 
for surgical simulation when real-time behavior is desired. It is a 
discrete model of particles (with mass) and springs connecting 
these. Particles move in space according to Newton's second law 

 
Figure 1. This picture shows the setup with styluses and the 

virtual environment for training surgical procedure in 
congenital cardiac surgery. 
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of motion constrained by springs, which connect pairs of particles. 
For a linear spring-mass model with damping the position of each 
particle xi with mass mi is given by the following 2nd order 
differential equation:  
 ∑ ++−=
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where yi is the damping factor and fi is the external forces. gij is the 
force vector defined by spring stiffness kij, spring rest length lij 
and particle positions xi  and xj as: 

 
ji

ji
jiijijij

xx

xx
xxlkg

−

−
−−= )(

2
1   (2) 

Since gij= -gji , the computational cost can be minimized by 
evaluating the forces of each spring once, and adding this term to 
the summed forces of the connected particles. This system of 
differential equations can be solved by standard numerical 
integration schemes. One such method is Verlet integration [8] in 
which the particle positions at the subsequent time-step can be 
calculated as: 
 2)()()(2)( htxhtxtxhtx &&+−−=+  (3) 

2.2 Parallel Computation of the Spring-Mass System 
The GPU can in many ways be regarded as a shared memory 
parallel architecture, although with many limitations. We will 
begin by some considerations on the design of a simple parallel 
algorithm to solve a spring-mass system on a shared memory 
architecture. Fortunately the solution to (1) is straightforward to 
parallelize and solve iteratively. Processor Pi is responsible for 
updating information regarding particle xi. At each time-step and 
for each particle the following must be done: Calculate spring 
forces based on the distance to neighboring particles and 
numerically integrate to calculate the new position of particle xi. 

Through the shared memory architecture, processor Pi can 
retrieve the current position of all particles for force calculation. 

2.3 GPU Pipeline 
When rendering a geometric primitive the vertex information is 
processed by a programmable vertex shader. Vertices are 
transformed and per vertex information is interpolated and 
transferred to the programmable pixel shader. The pixel shader 
processes this information as well as additional input in the form 
of textures to compute the final coloring of a fragment (a 
generalized pixel). 

 If we regard each fragment as a representation of a particle 
position we can design fragment programs to solve (1). An off-
screen rendering buffer (PBuffer) is used to store the calculated 

positions. Each position in the PBuffer maps uniquely to the 
position of one particle. Each component of each particle position 
xi = (x, y, z) is represented as a 32-bit floating point value in the 
red, green and blue part of a pixel through OpenGL float-buffer 
related extensions. A PBuffer can be bound either as the rendering 
target or as a texture. Reading from textures and writing to the 
rendering target implements shared memory in fragment 
programs. The PBuffer containing positions will in the remaining 
paper be referred to as the position texture. 

2.4 Integration loop on the GPU 
The basic loop for integration is as follows. At any given time-
step of the simulation, activate a dedicated fragment program by 
rendering a single quad covering the entire PBuffer. In this 
program, let the supplied texture coordinates implicitly provide 
particle positions through lookups in the position texture. The 
texture coordinates are given at the vertices of the quad and 
automatically interpolated throughout all fragments. A one-to-one 
mapping of the PBuffer between the input texture and output 
buffer is then established. 

The choice of the numerical integration method is influenced by 
the properties of the fragment program’s input and output. Verlet 
integration is well suited for our GPU implementation since 
calculations of future positions depend exclusively on the 
previous two positions. The two previous particle positions can be 
provided as input through textures. These textures are available 
from previously written PBuffers. Verlet integration result is only 
one vector, the position, and consequently conserves bandwidth 
compared to numerical integration resulting in more than one 
vector. Furthermore, the Verlet method is inherently stable at 
large time-steps, a desirable property for a real-time application. 

2.5 Spring-Mass Simulation on the GPU 
In this section we explain in detail two spring-mass 
implementations for the GPU.  The first method represents spring 
connections explicitly, while particles in the second method are 
connected implicitly based on their location in a three dimensional 
grid. The explicit method allows the most freedom in representing 
spring connections and particle locations at the cost of some 
simulation speed compared to the implicit alternative. 

2.5.1 A Spring-Mass System with Explicit Connections 
In a general spring-mass model every particle can be arbitrarily 
connected to other particles with no special order assumed. We 
encode this spring connectivity in a floating point texture, in the 
following referred to as the connectivity texture (Figure 3). This 
connectivity texture defines for each particle pi a list of springs to 

 
Figure 2. Part of the pig heart position texture containing 42.745 particles. 
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particles pj by storing 1) the texture coordinate in the position 
texture of each particle pj and 2) the rest length lij and stiffness kij  
The connectivity texture remains constant as long as no changes 
in particle connectivity are made. From an element of the 
connectivity texture a texture lookup provides the neighboring 
particle position xj. By iterating over all springs connected to 
particle pi  it is possible to calculate (2). If a node has less than the 
maximum number of neighbors, the spring rest length or stiffness 
can be set to 0 to indicate that a given element of the connectivity 
texture should not be considered.  

Note that the spring forces will be calculated twice (with 
different sign), from each particle connected to it. We have chosen 
not to take advantage of the fact that gji = -gij, as it would require a 
second pass. Additional information would also have to be given 
to each fragment to indicate the sign of the force of a given spring.  

2.5.2 A Spring-Mass System with Implicit Connections 
A potentially limiting factor of the approach of explicit 
connections is the intense use of texture lookups to retrieve the 
positions of neighbor particles. What if the texture coordinates of 
neighbors could be given directly as input to the fragment 
program to enable a single texture lookup to retrieve neighbor 
positions? Using interpolated texture coordinates to index 
neighbors is possible if particles are fixed in a regular three-
dimensional grid. Particles are then regarded as connected if they 
are neighbors in the grid. There is no explicit connectivity texture 
as in the previous method. We chose to connect each particle to 
18 neighbors as depicted in Figure 4 to constrain both shear and 
structural changes. 
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Figure 5. The flat 3d-texture approach. The 3D volume of voxels 

is mapped to a 2d texture by laying out each of the d slices of 
size h·w in the 2d texture one after another. The slices are 

padded with elements containing unique alpha values of zero 
to detect the volume borders. 

As stated previously, fragment programs are run in response to 
geometry being rendered.  For this to happen in the case of 
particles in a 3d-grid, we defined a mapping to a 2d PBuffer. This 
mapping is based on the flat-3d texture method [9]. Beginning 
with the bounding cube of the 3d-grid, we define slices through 
the depth of the cube. These slices are mapped consecutively to 
the 2d texture (Figure 5). For an example of a position texture 
based on the flat-3d approach see Figure 2. 

Texture coordinates indicate the locations of neighbouring 
particles in the position texture. The coordinates are fixed offsets 
from the fragment positions and are given at vertices of the 
rendered quads. Interpolation ensures that all fragments get the 
correct offset to connected particles in relation to their own 
position. Figure 6 depicts this process. The 18 texture locations of 
neighbors plus the location of the particle itself are given through 
8 texture coordinates (with 8·4=32 values). Identical components 
of neighbor locations can be reused. To handle border cases 
correctly when laying out in several rows, it is necessary to render 
five quads as illustrated in Figure 6. Texture coordinates take into 
account the wrapping and will ensure correct neighbor relations. 
Neighbors within a slice are addressed by offsetting the fragment 
position by ±1 along the width or height of the texture. Particles 
on the border of a slice are not intended to be connected to the 
neighbors, though. To alleviate this problem we pad the slices 
with inactive particles that we do not seek to process, notice the 
padding in Figure 5. We define inactive particle fragments to have 
an alpha value of zero. This value is detected in the fragment 
program, and the calculation skipped for the associated springs.  

Neighbors between slices are addressed by furthermore 
offsetting with either w+1 or –(w+1) to reach a neighbor in the 
previous and next slice respectively. 

 

2: lookup tex-coords 

1: lookup neighbors 

Connectivity Texture Position Texture 

w·maxConnections 

maxConnections 

h h 

w

 
Figure 3. Layout of the connectivity texture. For a fragment (x,y) 

in the position texture, the connectivity texture contains the 
texture-coordinates of neighbors in coordinates 
(x·maxConnections , y) to ((x+1)· maxConnections , y). 

 
 

                           a)                                             b) 
 

Figure 4. Particle connectivity in a 3D grid. Each particle a) is 
connected to 18 neighbors b).  

 

a) b) 
 

Figure 6. Vertex texture coordinates for neighbor positions. For 
clarity we will only show two of the 18 possible texture 

coordinates. a) depicts the five quads rendered to ensure 
correct wrapping. The texture coordinate pointing to the 
neighbor directly below in depth is shown for the top-left 

vertex. b) shows the four texture coordinates given with all 
quads for the right neighbor. 
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By this implicit connectivity gij in (2) can be determined using 
only 1 texture lookup per neighbor instead of 2 per neighbor as 
was the case in the explicit method. Furthermore we have fixed 
the possible rest lengths to all neighbors to either 1 or √2.  We can 
hereby simplify the force computation somewhat if we assume all 
stiffness coefficients kij to be equal to the constant k: 
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D1 is the set of neighbor particles with rest length 1 and D2 is the 
set of neighbor particle with rest length √2. Using this expression 
as the basis for the fragment programs saves instructions. Equally 
important we have a sum of unit-vectors, which we can later use 
to calculate normals after deformation. 

Naturally, a cube of connected particles does not constitute a 
flexible shape. To support complex morphology we recognize that 
arbitrary fragments can be inactive particles by setting their alpha 
value to zero (as in the case of the padding). Within the resolution 
of the grid, any morphology can be modeled in this fashion. 
Unfortunately the size of the position texture has at least the 
number of elements as the bounding cube surrounding the model. 
A vast majority of fragments are potentially inactive particles. 
They are processed automatically however, since they are 
positioned within a rendered quad. Even though we can detect 
these particles in the fragment programs, there is some overhead 
involved in doing so. To overcome this problem we initially 
“fuse” an image of the model in the OpenGL depth buffer once, 
and set up a depth-buffer test to fully eliminate processing 
inactive particles.  

2.6 Visualization and Approximate Normals 
In the previous sections we have presented two methods to 
calculate the particle positions on the GPU. The next step is to 
visualize the result. This has two aspects: How to construct and 
render a surface model of the morphology, and how to deform this 
surface based on the newly calculated particle positions. 

 A surface model is reconstructed with the marching cubes 
algorithm [10]. Next we define a mapping from each surface 
vertex to one particle in the spring-mass system. With this 
mapping the issue of deforming the surface is reduced to 
transferring the calculated particle positions to the related surface 
vertices. We cannot simply read back the particle positions to the 
CPU and set vertex positions accordingly, as this would be a 
major performance bottleneck. Instead we utilize a new feature in 
the Vertex Shader 3.0 design: texture lookups in vertex programs. 
The position of each surface vertex to be rendered is found by a 
texture lookup in the position texture. To render the model we 
initially set up a display-list, which renders the surface geometry 
at its original rest positions. We pass one texture coordinate per 
vertex to provide the coordinates to lookup in the position texture. 
A vertex program then fetches the most recent particle position, 
does basic transformation and outputs the deformed position. 

An important issue in this visualization is the calculation of 
surface normals when shading the surface. In a conventional CPU 
application one would often approximate vertex normals by 
averaging the adjacent face normals. Face normals are found by 
reading the positions of nodes making up the face and calculating 

the normal of the plane. In the presented GPU approaches to a 
spring-mass system we do not have the necessary surface 
information to simply reuse the CPU approach. Still it is not an 
option either to read back the position texture each frame due to 
performance reasons; the calculation of normals must take place 
on the GPU. In [11] a general method for the calculation of 
normals for discrete surfaces is presented. Our approach is 
approximate but simple and fits elegantly with the way we 
calculate forces. We approximate the normals by the normalized 
sum of the unit vectors pointing from neighbors to the particle in 
question (Figure 7): 
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Since we already computed the sum of the unit vectors in the 
force calculations, we only need to normalize this vector and save 
it. This approximation gives us well behaving normals almost for 
free. We pack the 3-tuple normal into the 32 bit alpha channel of 
the fragment. The normal is read by the visualization vertex 
program and send to the fragment program for per pixel lightning. 
To add shading details we normal-map the rendered geometry 
based on a reconstructed model with a very high level of detail 
(Melody, Nvidia, USA). 

2.7 Interaction 
To interact with the simulation the system uses two Polhemus 
Fastrak styluses with two buttons each (Figure 1). Each stylus 
provides position and orientation of the instruments in space. We 
support three modes of interaction; probing, grabbing and cutting.  
The main issue in all these interaction methods is to avoid 
communication between the CPU and GPU every frame, as this 
will introduce a bottleneck in the application. 

2.7.1 Probing 
When probing, all particles seek to remove themselves from the 
volume of space covered by the interaction instrument. Currently 
our probing tools are represented as spheres. The fragment 
program calculates intersection and intersection response. Every 
fragment simply checks if the particle is inside a globally defined 
set of spheres. If this is the case the particle is projected to the 
sphere surface. 

2.7.2 Grabbing 
All particles have a state indicating whether they are grabbed or 
not. When the grab-button is pressed all particles are checked for 
intersection with a bounding sphere of the grabbing tool. If a 
particle is intersected the state of the particle is changed to 
‘grabbed’. When particles are grabbed, they will set their position 

a) b)
 

Figure 7. A 2d example of normals calculated on the basis of 
unit-vectors from neighbors. a) the original geometry. b) the 

deformed geometry. 
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relative to the center of the grabbing device for as long as the 
grab-button is active.  

We have chosen to resolve the grab state of particles on the 
CPU. When the grab-button is pressed we do a read-back of the 
position texture once. The CPU knows which particles are 
grabbed and what their positions should be relative to the 
interaction device. This information is rendered back into the 
position texture after the integration, overwriting that calculated 
position, and before cycling of the PBuffers. When the grab-
button is released the additional rendering is no longer necessary. 
Since the position texture is only read back at the beginning of a 
grab there is no noticeable slowdown in the simulation. The final 
result is that grabbed particles will move relative to the interaction 
device and neighboring particles will follow due to the springs 
connecting these particles. 

 It is possible to handle grabbing entirely on the GPU. This 
leads to more fragment operations per simulation iteration 
however, and results in lower simulation rates. 

2.7.3 Cutting 
A cutting action defines an incision in the spring-particle 
connections, removing or altering connections so that there are no 
structural constraints across the incision. The geometry should 
furthermore follow the incision as closely as possible. 

Since the surface faces are not directly represented in the 
fragment programs for the spring-mass computations, updating 
the surface geometry is done on the CPU with up-to-date nodal 
positions. Before each cutting procedure the position texture is 
read back to the CPU once. Collision detection can be done on the 
CPU or GPU [12] but collision response in the form of structural 
changes is handled on the CPU. 

When using explicit connections, cutting is simply a transfer of 
CPU based cutting schemes [13] since we represent both particles 
and springs. Structural changes can be propagated to the GPU by 
simply writing into the position texture and connectivity texture. 
When using implicit connections we have no representation of 
springs and we cannot insert particles between other particles. A 
simple cutting scheme would erase particles and hereby the 
springs connecting the particle to its neighbors. This can be 
accomplished by writing an alpha value of zero into the fragments 
corresponding to the particles we wish to erase. This will mark the 
fragments as an inactive particles. The incision would then be at 

least as wide as the length of two relaxed springs. We propose 
instead a method of cutting in the implicit model that improves 
the granularity; we instead erase individual springs. To erase a 
spring we render a special fragment-sized quad at the position of 
the two associated fragments. The fragment program is 
unchanged. We erase springs by giving the value of zero for those 
texture coordinates (out of the 18) related to erased springs. A 
zero texture coordinate results in reading the texture padding and 
consequently indicates that there is no connection. This approach 
of cutting results in a growing number of quads rendered 
proportional to the number of erased springs. In many simulations 
the number of quads will not grow excessively however. 

3 RESULTS 
This section presents performance measures of the described GPU 
spring-mass systems and compares them to a CPU 
implementation. The GPU based spring-mass systems were 
implemented in CG, OpenGL arbfp1 (including 
fragment_program2 features) as well as Visual Studio .net 2003 
C++.  The CPU spring-mass system used for comparison is a pure 
CPU implementation of the spring mass system with implicit 
connections. The system was implemented in Visual Studio .net 
2003 C++ and compiled with all optimization flags set and 
optimized for speed. The tests were run on a Pentium IV 3GHz 
machine with a Gainward Geforce 6800 Ultra graphics card. 

As a case study for the GPU-based surgical simulator we 
extended the Cardiac Surgery Simulator [7] to support the GPU 
spring-mass model (Figure 8). The morphology is based on CT-
images of a pig heart. The CT-data consists of 400x400x395 
voxels in isotropic resolution of 0.6 mm in all axes. From the 
high-resolution dataset we resampled a reduced resolution dataset 
of 100x100x100 voxels. The low resolution dataset was used in a 
marching cubes reconstruction of one surface geometry and to 
create a regular grid of particles for the spring-mass simulation. If 
a voxel in the low resolution dataset indicated tissue, we created a 
particle at that location in the regular 3d-grid of particles. In total, 
this provided 42.745 particles (Figure 2). The surface 
reconstructed with the marching cubes algorithm consists of 
31.320 faces. To add further visual detail from the high resolution 
CT-dataset we calculated a normal-map from a 630.000 polygon 
reconstruction of the high resolution CT-dataset. The simulator 

 
a)                                                                                                                 b) 

Figure 8. A Pig heart consisting of 42.745 particles in a regular grid reconstructed from a CT data set. a) original geometry b) deformed by 
grabbing. 
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was set-up to do four simulation iterations per visualization frame. 
In this setup the simulator was able to run at 47 frames per 
second. With four simulation iterations per frame this corresponds 
to 188 iterations of the simulation per second. Figure 8 shows 
deformation of the morphology while Figure 9 shows cutting. We 
furthermore refer to the accompanying video for a demonstration 
of the system. 

Performance results for different sizes of GPU spring-mass 
systems in comparison with the CPU implementation are reported 
in Figure 10 and Table 1. Performance results for the implicit 
GPU cutting are reported in Figure 11. 

4 DISCUSSION 
As can be seen from Table 1 and Figure 10 the GPU clearly 
outperforms the CPU in computation of a spring-mass system. 

Comparing the implicit GPU method to the CPU implementation 
we have a speedup of up to a factor 30. The GPU achieves this 
computational speedup since we successfully expressed the 
spring-mass algorithm in the language of the very specialized 
fragment processor. The GPU method with explicit connections 
runs at about half the speed of the implicit method. There is 
clearly a trade-off between speed and the generality of 
connectivity in the spring-mass system. 

With a GPU implementation of the spring-mass system we use 
the GPU hardware for both visualization and calculation of 
deformation. It is important to realize that this will not slow down 
visualization overall compared to a CPU implementation. On the 
contrary it might be faster; The GPU implementations render the 
surface geometry through display lists allowing for GPU caching 
of the geometry. A CPU implementation cannot use this technique 
because new vertex positions are calculated every frame, and 
these need to be send to the GPU. 

With the increased number of iterations available per second, 
we can achieve faster convergence when simulating physically 
based deformable geometry. We can iterate several times in the 
simulation loop before rendering the result to the screen, still in 

 
Figure 9. Cutting in the implicit model. The incision is as wide as the rest length of the springs. 

Table 1. Performance comparison for the CPU, Explicit Connections 
GPU and Implicit Connections GPU. In the 2nd , 3rd and 4th 

column we present iterations per second.  GPU/CPU columns 
present the GPU speedup in comparison to the CPU. 

Nodes / 
method 

CPU Implicit 
GPU  

Implicit 
GPU / 
CPU 

Explicit 
GPU 

Explicit 
GPU / 
CPU 

10.000 45,8 839,8 18,7 457,1 10,2 
20.000 20,2 476,9 23,6 234,4 11,6 
40.000 9,9 264,6 26,9 121,0 12,3 
50.000 7,8 218,0 28,1 99,0 12,7 
100.000 3,3 104,1 31,4 48,5 14,6 
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Figure 10. The GPU spring-mass systems in comparison to a CPU 

implementation. 
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real-time. Furthermore we can achieve greater stability and 
precision of the numerical methods by using smaller time-steps 
than previously. Finally, the added computational power could 
also be used to process larger geometries with added degree of 
detail, enabling more realistic surgical simulations.  

If we consider a standard spring-mass implementation, there are 
many improvements that can accelerate the simulation on the 
CPU. These might, however, not be easily ported to the GPU. 
Hence, the presented speedup is not to be interpreted as a speedup 
compared to the fastest CPU implementation available. 

The performance of the Cardiac Surgery Simulator in the 
reported case study resulted in real-time visualization and fast 
convergence of the deformed tissue. The geometry was 
furthermore detailed enough to represent the complex morphology 
to a higher degree than previously. For this kind of surgical 
simulation the growing number of quads rendered to support 
incisions is a minor performance issue since using few and small 
incisions is a primary goal. The granularity of cuts in the implicit 
method is not a big problem for the incisions in the heart since 
these are large compared to the detail of the spring-mass system.  

4.1 Perspectives 
As a next step in the range of interaction modalities, future 
research will investigate how the GPU implementation of the 
spring-mass algorithm can effectively support suturing. 

In this paper we defined a simple mapping between surface 
geometry and the underlying spring-mass simulation. When 
texture lookups in vertex programs eventually support 
interpolation of the texture values, more advanced mappings are 
possible. The visible geometrical surface might then become more 
detailed than the underlying simulation but still deform based on 
the simulated particles. Additionally, when surface vertices 
become detached from the particle positions, we can also split the 
cutting operation in two: The cutting of the particle system and 
the cutting of the surface geometry. This would enable us to 
visualize very detailed cuts controlled by a less detailed particle 
system. 

In cases where the spring-mass model is not considered 
adequate, other physically based models of deformation could be 
ported to the GPU following the principles of this paper. A Finite 
Element Model could be implemented as a dynamic simulation in 
much the same way as the spring mass model, but requiring a 
larger number of neighbor lookups as well as neighbor dependent 
stiffness coefficients. 

It would also be very interesting to look into the possibilities of 
automatic level of detail in the spring-mass simulation using  

hardware accelerated linear interpolation of texture lookups. Such 
a representation would probably include some hierarchical 
representation of particles on the GPU, and could possibly be used 
as an acceleration structure for intersection tests without the 
transfer of data to the CPU. 

We have successfully implemented an accelerated surgical 
simulation on the GPU. Running the GPU based simulation does 
not utilize the CPU fully though. When the communication 
between the CPU and GPU becomes faster, i.e. through the PCI-
express standard, the CPU and GPU should work more closely 
together on the computational problems.  It will become important 
to identify which problems are best suited for the graphics 
processing unit and which are well suited for the central 
processing unit. 

4.2 Acknowledgements 
We acknowledge Vibeke Hjortdal, MD and Ole Kromann Hansen, 
MD for clinical support and guidance throughout the development 
of the surgical simulation. For the data acquisition we 
acknowledge the contributions of Dr. Gerald Greil, University of 
Tübingen, Germany as well as Dr. T. Flohr and Dr. I. Wolf. 

REFERENCES 
[1] Richard M. Satava. Accomplishments and challenges of surgical 

simulation. Surg Endosc;, 15(3), pp 232-41, 2001. 
[2] Sarah F. F. Gibson and Brian Mirtich. A Survey of Deformable 

Modeling in Computer Graphics, MERL Technical Report, TR97-
19, 1997  

[3] Kevin Montgomery, et al. Spring: A General Framework for 
Collaborative, Real-time Surgical Simulation. Medicine Meets 
Virtual Reality 11, pp 23-26, 2002. 

[4] Chris J. Thompson , Sahngyun Hahn and Mark Oskin. Using modern 
graphics architectures for general-purpose computing: a framework 
and analysis. Proceedings of the 35th annual ACM/IEEE 
international symposium on Microarchitecture., pp  306—317, 2002. 

[5] Simon Green. OpenGL Shader Tricks.  Game Developers 
Conference, 2003. 

[6] Thomas S. Sørensen, Erik M.  Pedersen, Ole K. Hansen,  Keld 
Sørensen. Visualization of morphological details in congenitally 
malformed hearts. Cardiol Young; 13(5), pp 451-60, 2003. 

[7] Jesper Mosegaard. LR-spring-mass model for cardiac surgical 
simulation. Medicine Meets Virtual Reality 12, pp 256-258, 2003. 

[8] Loup Verlet. Computer Experiments on Classical Fluids. I. 
Thermodynamical. Properties of Lennard-Jones Molecules. Physical 
Review, Vol. 159, pp 98–103, 1967. 

[9] Mark J. Harris, William V. Baxter III, Thorsten Scheuermann and 
Anselmo Lastra. Simulation of Cloud Dynamics on Graphics 
Hardware. Proceedings of Graphics Hardware, pp 92-101, 2003. 

[10] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High 
Resolution 3D Surface Construction Algorithm,  
Computer Graphics (Proceedings of SIGGRAPH '87), Vol. 21, No. 
4, pp. 163-169, 1987. 

[11] Grit Thürmer & Charles A. Wüthrich. Normal Computation for 
Discrete Surfaces in 3D Space. Eurographics 97. Volume 16 (1997), 
Number 3, pp 15-26.  

[12] Naga Govindaraju, Stephane Redon, Ming C. Lin and Dinesh 
Manocha. CULLIDE: Interactive Collision Detection Between 
Complex Models in Large Environments using Graphics Hardware , 
ACM SIGGRAPH/Eurographics Graphics Hardware, pp 25-32, 
2003. 

[13] Han-Wen Nienhuys and A. Frank van der Stappen. A Surgery 
Simulation Supporting Cuts and Finite Element Deformation, 
Medical Image Computing and Computer-Assisted Intervention, pp 
153-160, 2001. 

Implicit cutting

0

10

20

30

40

50

0 5 10 15 20
Percentage of particles in cut

Ff
ra

m
es

 / 
se

c.

 
Figure 11. For the implicit method we proposed a cutting scheme 

that rendered additional quads to exclude individual springs. 
This graph shows the relationship between the size of the cut 
as percentage of the whole geometry of 42.745 particles and 
the frame rate. The frame-rate is for rendering the pig heart 

morphology with four iterations of simulation per visualization. 
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