
IPT & EGVE Workshop (2005)
R. Blach, E. Kjems (Editors)

Real-time Deformation of Detailed Geometry Based on
Mappings to a Less Detailed Physical Simulation on the GPU

J. Mosegaard1 & T. S. Sørensen2

1 Department of Computer Science,2 Centre for Advanced Visualization and Interaction, University of Aarhus, Denmark

Abstract
Modern graphics processing units (GPUs) can be effectively used to solve physical systems. To use the GPU
optimally, the discretization of the physical system is often restricted to a regular grid. When grid values rep-
resent spatial positions, a direct visualization can result in a jagged appearance. In this paper we propose to
decouple computation and visualization of such systems. We define mappings that enable the deformation of a
high-resolution surface based on a physical simulation on a lower resolution uniform grid. More specifically we
investigate new approaches for the visualization of a GPU based spring-mass simulation.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling
I.3.7 [Computer Graphics]: Animation

1. Introduction

Recently GPUs have become programmable to a degree that
makes them useful for general-purpose computation [BP04].
Specifically, the computation of physically based systems
have been successfully implemented [HCSL02, MHS05,
MS05, BFGS03]. The GPU is designed to work with tex-
tures, and the discretization of the physical equations often
takes advantage of this by restricting nodes to a regular grid.
Consequently, attention must be put into visualizing the re-
sults in detail, smoothly and continuously.

In this paper we focus on the problem of visualizing a
deformable surface defined by a spring-mass system solved
on the GPU. In [MHS05, MS05] we presented methods for
GPU accelerated computation of spring mass based elas-
tic deformation. In particular, a grid-based arrangement of
mass-points gave a speedup of a factor of 20 to 30 compared
to a standard CPU implementation. To visualize the surface,
we previously used a direct mapping from the position of vi-
sualized vertices to the associated position of mass-points in
the grid. This resulted in a very jagged look, see figure2 a)
and b). This limitation is removed by the work in this paper,
see figure1 and figure2 c).

We present three generally applicable methods for the vi-
sualization of a surface deformed by a set of nodal positions.
The methods are not directly dependent on the calculation

Figure 1: A physical simulation on the GPU calculates
the deformation of a grid of 20.000 particles representing
the shape of a heart. A heart surface with 50.000 faces is
mapped to the grid. As a result the highly detailed surface
can be deformed in real-time based on the deformation of
the simpler grid. In the close-up, the grid is shown on top of
shading illustrating the dynamically calculated normals.

c© The Eurographics Association 2005.

J. Mosegaard & T. S. Sørensen / Real-time Deformation of Detailed Geometry on the GPU

(a) One-to-one mapping (b) Node-grid (c) Triangle-basis based mapping

Figure 2: A close-up of the grid-based spring mass simulation showing the springs of the physics system in b). The visualization
is done with one-to-one mapping between nodes and vertices in a) and offsets from nodes to vertices in c). An orthogonal
projection matrix has been used to clearly show the grid.

of the physical system and can be applied to other physi-
cal systems or methods of animation. First, a simple one-to-
one mapping (with approximate normals) is defined between
visualized vertices and mass-points. Secondly, we present
two methods of deforming and visualizing a detailed sur-
face based on the deformation of a relatively low number of
nodes. The two methods both define a dynamically chang-
ing orthonormal vector basis for all nodes on the surface of
the simulated volumetric grid. The surface-vertices to be vi-
sualized are expressed in this basis and consequently reflect
the deformation of the simulated nodes. Tangent space bases
can also be expressed in the dynamically calculated bases
and enable normal-mapping of the highly detailed deform-
ing surface geometry. Common to all the methods presented
is that we construct a detailed surface mesh and render this
mesh through a vertex program that defines the mapping be-
tween vertices on the surface and nodes in the simulation.

The overall goal of our project is to simulate surgery on
children with congenital heart disease, supporting deforma-
tion as well as cutting of heart-tissue. The detailed visualiza-
tion is needed for the surgeon to accurately recognize fea-
tures of the heart. At the same time the physical system must
have a resolution that allows for real-time deformation.

2. Previous work

Our simulated system can be regarded as a low-resolution
geometry based on which we express and animate a highly-
detailed geometry. Classical approaches to this problem on
the CPU include bump mapping and displacement mapping.
Bump mapping [Bli78] perturbs the surface normals at per
texel basis affecting shading as if the geometry had bumps.
Displacement mapping [Coo84] tessellates each triangle and
displaces the newly generated vertices along the normal ac-
cording to an amount read from a height-map. Displacement
mapping allows for the animation of a low resolution mesh
of control points that deform the high resolution geometry
accordingly.

Bump mapping can easily be implemented in fragment

programs on the GPU, but does not correct for the jagged
appearance along the contour of the mesh. While bump map-
ping does not in itself solve the problem of the jagged con-
tours, it can be combined with the presented work to visu-
alize small-scale surface details. GPU implementations of
displacement-mapping based on textures have been made
possible through the texture lookup instruction in vertex
programs introduced in shader model 3.0. Simple one-
dimensional perturbations along the z axis of a grid of
vertices have been used to visualize a dynamic heightmap
[Kry05], but the method cannot directly do displacement
mapping for an arbitrary 3D mesh.

Because of the large amount of fragment processing
power available, several authors have introduced the idea
of computing per-pixel offsets from actual geometry to
a height-map represented geometry [HEGD04, KTI∗01].
These techniques generally use a height-map with ray
marching which is computationally expensive. Complex 3D
meshes including curvature have furthermore been problem-
atic because the current ray-marching techniques are not
aware of curvature nor the mapping of heightmaps to faces.
Techniques such a [WWT∗03] pre-process the intersection-
tests to simplify the calculations on the GPU and use lookups
in the pre-processed data, at the cost of extensive memory
usage. For our application the memory usage is too high.
The technique furthermore requires the geometry of the sim-
ulated system to fully enclose the surface to be visualized.
That requirement is too restrictive for a grid based simula-
tion visualizing incisions that are smaller than the grid reso-
lution.

3. Methods

In this paper we use the termvertexto describe a vertex in the
surface mesh exclusively, and the termsnodeandnodal to
describe a position in the lower detailed set of control points.
When we wish to emphasize that a node-position is based
on a physical simulation we use the termparticle. We start
out by briefly presenting our GPU spring-mass simulation in

c© The Eurographics Association 2005.

J. Mosegaard & T. S. Sørensen / Real-time Deformation of Detailed Geometry on the GPU

section3.1. In section3.2we present the simple one-to-one
mapping between nodes and vertices and in section3.3 we
present two more general mappings from a set of vertices to
a less detailed set of nodes.

3.1. Grid based calculation of deformation on the GPU

We briefly review the grid-based layout of particles (also
called the method of implicit connections) for the calculation
of deformation on the GPU as presented in [MHS05,MS05].
The method is based on a layout of particle-positions in a
regular three-dimensional grid. Each particle is connected
in a fixed pattern to the 18 nearest neighbours. The grid is
mapped to a 2d texture for fragment processing, and the tex-
ture containing the current set of particle positions is called
the position-texture. In fragment programs we calculate the
forces influencing the particles and numerically integration
to obtain positions. The basic linear spring forcegi with rest
length l i j for a nodei with position pi and neighbour posi-
tionsD is calculated as:

~gi = ∑
j∈D

1
2

ki j
(

l i j −‖pi −p j‖
) pi −p j

‖pi −p j‖
(1)

This expression can be optimized for fragment processing if
we assume that the spring coefficientski j are all equal to the
constantk and observe that springs arranged in the grid have
rest-lengths 1 and

√
2:

~gi =
1
2

k

{

∑
j∈D1

pi −p j

‖pi −p j‖
− ∑

j∈D1

(pi −p j)+

√
2 ∑

j∈D2

pi −p j

‖pi −p j‖
− ∑

j∈D2

(pi −p j)

} (2)

D1 is the set of neighbours with distance 1 andD2 is the set
of neighbours with distance

√
2. Besides saving instructions,

this expression includes a sum of unit-vectors, which is used
to find approximate normals after deformation.

To visualize the set of nodes we cannot simply read back
the node positions to the CPU and render vertex positions
accordingly, as this would be a major performance bottle-
neck. Instead we utilize a new feature in the shader model
3.0 design; texture lookups in vertex programs. We use ver-
tex programs to express the calculations involved in map-
ping vertices to nodes. Through vertex texture fetches we
transfer only nodes that are part of the surface of the mesh.
The geometry specified to the 3D API to visualize the cur-
rent simulation-step is a static mesh, allowing caching on the
graphics card.

3.2. One-to-one mapping and approximating normals

The limited visualization method in [MHS05,MS05] is pre-
sented in this subsection to motivate the later generalization.
The method is based on a simple one-to-one mapping be-
tween the position of a vertex and a surface node, simply

a) b)

Figure 3: A 2d example of a normal calculated on the basis
of unit-vectors from neighbours. a) the original geometry. b)
the deformed geometry. The normalized vectors (grey) are
added to form the approximate normal (black).

transferring the position of the node to the corresponding
vertex-position. To render the model we initially set up a
display-list, which renders the surface geometry at its orig-
inal rest position. We pass one texture coordinate per ver-
tex to provide the coordinates of the corresponding node in
the position texture. The vertex program then fetches the
most recent node position, performs basic transformation
and outputs the deformed position for further processing in
the graphics pipeline.

An important issue in this visualization is the calcula-
tion of surface normals used for shading of the surface. In a
conventional CPU application, one would often approximate
vertex normals by averaging the adjacent face normals. Face
normals are found by reading the positions of nodes mak-
ing up the face and calculating the normal of the plane. In
the presented GPU approach to a spring-mass system, we do
not have the necessary surface information to simply reuse
the CPU approach. It is not an option either to read back the
position texture each frame due to performance reasons; the
calculation of normals must take place on the GPU. We ap-
proximate surface normals by the normalized sum of the unit
vectors pointing from neighbours to the particle in question,
an example is seen in figure3:

~Na(i) = normalize(∑
j∈D

normalize(pi −p j)) (3)

Since we already computed the sum of the unit vectors in the
force calculations in equation (2), we only need to normalize
this vector and save it. This approximation gives us well be-
having normals almost for free. We pack the 3-tuple normal
into the 32 bit alpha channel of the fragment representing the
particle-position. The normal is read and unpacked by the vi-
sualization vertex program and send to a fragment program
for per pixel lightning.

3.3. Mapping using the triangle basis

In the previous section we presented a one-to-one mapping
between a surface vertex and a node with a direct transfer of

c© The Eurographics Association 2005.

J. Mosegaard & T. S. Sørensen / Real-time Deformation of Detailed Geometry on the GPU

p1
p2

p3

r

v

Figure 4: a) For a high-resolution set of vertices and a
low-resolution set of nodes we define for each triangle
(p1,p2,p3) and corresponding vertexv the reference pointr
and offset vector~o = v− r .

nodal positions to vertex positions. For shading, an approx-
imate normal was found based on the force calculation. The
technique presented in this section enables a "many-to-one"
mapping from vertices to nodes through an offset vector. The
goal of this technique is to deform highly detailed geometry
based on the deformation of less detailed geometry. The less
detailed geometry can be as simple as a set of interconnected
points.

3.3.1. Defining an offset the in triangle basis

For each vertexv in the highly detailed surface we associate
a triangle of three nodal positions(p1,p2,p3), which control
the position of the vertex, see figure4. The triangle defines
a space within which we will represent vertex positions and
vectors from the highly detailed model. We need the posi-
tions of the vertices to be based on the location, rotation and
scaling of the triangle bases. First we define a reference point
r for each vertex. The reference point is chosen as a projec-
tion of the vertex onto the triangle base. The reference point
will be represented by weights(w1,w2,w3) of the nodal po-
sitions:

3

∑
i=1

piwi = r

3

∑
i=1

wi = 1

(4)

This definition allows the reference points of the vertices to
adjust as the triangle scales.

The vertexv can be expressed as an offset vector~o from
the reference pointr :

v = r +~o. (5)

This vector is expressed in world space. As a next step, we

a) b) c)

Figure 5: Visual artifacts can occur when vertices are ro-
tated based on per triangle information only. For simplicity
we exemplify in 2D. a) is the original configuration of nodes
(boxes) and vertices (dotted line and spheres). b) illustrates
the problem of two vertices that are very close in the orig-
inal configuration but are disproportionally far away from
each other when the deformation occurs. c) illustrates how
the vertices can intersect the mesh.

express the offset vector in a vector basis formed by the lo-
cation of nodes in the associated triangle. Ideally, the offset
vector should be affected by both rotation and scaling of the
triangle. We simplify the definition of the offset however,
taking into account only the rotation of the associated tri-
angle. Depending on the chosen projection of vertices onto
triangles, the offset vector will be close to the normal of the
triangle, in which case scaling in the triangle plane has little
or no effect. Per triangle we define the orthonormal basis (~T,
~N, ~B) based on(p1,p2,p3) as thetriangle basis:

~Bt = normalize(p3−p1)
~T = normalize(p2−p1)
~N = ~T × ~Bt
~B = ~N×~T

(6)

The offset vector~ot in the triangle basis is calculated as:

~ot =
(

~o ·~T,~o·~N,~o·~B
)

(7)

3.3.2. Curvature across triangles

In the previous section the triangle basis was defined as
being constant across each triangle. Consequently, in some
cases deforming a mesh of triangles can result in visual ar-
tifacts between vertices that are associated to different trian-
gles, see figure5 and figure6 a). The deformation of vertices
associated to different triangles is not in any way dependent
even though they might be very close in the original con-
figuration in world space. A better solution is to interpolate
the orthonormal bases across the triangles. This means that
the orthonormal basis should be defined at each node and de-
pend on the orientation of all incident triangles. This approx-
imates the curvature of the simulated shape more closely,
not only the orientation of each triangle in isolation. The
difference is comparable to the difference between flat and

c© The Eurographics Association 2005.

J. Mosegaard & T. S. Sørensen / Real-time Deformation of Detailed Geometry on the GPU

(a) Static normal (b) Interpolated normal

Figure 6: Visualization of the deformation of a dragon [Sta]. a) shows the deformation without correction for curvature and b)
shows the deformation with correction for curvature. The shading of the dragon is a combination of normal-mapping and the
colour representing the dynamic normal.

Gouraud shading. A naive implementation would require a
large amount of expensive vertex texture fetches, calculat-
ing the triangle bases of all surrounding triangles. Instead
we address this issue by remembering that we already have
approximate normals per node (section3.2). We do not have
a tangent and bi-tangent per triangle node though. Our so-
lution is to assume that the approximate normal~Na(i) and
the normal~N (equation (6)) are close enough that we can
use the per-triangle tangent~T and bi-tangent~B to construct
a per-vertex tangent and bi-tangent based on the approxi-
mate normal. To compute the interpolated normal for a ver-
tex associated to a given triangle of nodes(p1,p2,p3) we
use the weights(w1,w2,w3). The interpolated triangle basis
(~Tc, ~Nc, ~Bc) can be expressed as:

~Nc = ∑3
i=1 wi

~Na(i)
~Bc = ~Nc×~T
~Tc = ~Bc× ~Nc

(8)

Any vertex on the highly detailed geometry can now be ex-
pressed in the interpolated triangle basis as in equation (7).

3.3.3. Implementation

The entire highly detailed mesh is sent to the GPU for visual-
ization through OpenGL as vertices arranged in a mesh. For
all vertices we pre-calculate the nodal weights (to express
the reference point) and the offset in the triangle basis on
the CPUonce. This information is given as vertex attributes
to the vertex program. The nodal positions reside in texture
memory; consequently we give three texture-coordinates as

additional per-vertex attributes to resolve the current posi-
tions(p′

1,p
′

2,p
′

3).

In the vertex program three texture lookups are used to
retrieve the current nodal positions. Finding the vertex po-
sition in the vertex program is equivalent to the construc-
tion of weights (equation (4)), triangle-basis (equation (6)
or (8)), and offset-vector (equation (7)) on the CPU. On the
GPU these calculations are done "backwards" compared to
the CPU; resulting in the current vertex pointv′ based on the
configuration of the current positions(p′

1,p
′

2,p
′

3):

lookup(p′

1,p
′

2,p
′

3)

r ′ = ∑3
i p′

i wi

~Bt = normalize(p′

3−p′

1)
~T′ = normalize(p′

2−p′

1)
~N′ = ~T′× ~Bt
~B′ = ~N′× ~T′

unpack(~N′
a(1), ~N′

a(2), ~N′
a(3))

~N′
c = ∑3

i=1 wi
~N′
a(i)

~B′
c = ~N′

c× ~T′

~T′
c = ~B′

c× ~N′
c

~o′ =

{

(~ot
x · ~T′

c , ~ot
y · ~N′

c,
~ot

z · ~B′
c) if interpolated

(~ot
x · ~T′, ~ot

y · ~N′,~ot
z · ~B′) if constant

v′ = ~o′ + r ′

(9)

c© The Eurographics Association 2005.

J. Mosegaard & T. S. Sørensen / Real-time Deformation of Detailed Geometry on the GPU

3.3.4. Shading

Simple Gouraud shading of the highly detailed mesh de-
pends on a per vertex normal. An optimal normal for shading
is possibly different from the normal of the triangle basis.
Consequently a pre-calculated normal for the initial mesh
configuration is expressed in the triangle basis hereby re-
flecting the deformation of the nodes. Tangent-space based
shading such as normal mapping or parallax mapping is pos-
sible if we express vectors defining the tangent space in
the triangle basis. These additional vectors are given as per-
vertex attributes.

3.4. Results

The fragment and vertex programs have been implemented
on a GeForce 6800 Ultra graphics card. For shading of all
the illustrated models we have used normal mapping.

The heart model in figure1 has approximately 50.000
faces. The simulation grid consists of 20.000 nodes. The
triangle-basis based visualization with correction for curva-
ture can be visualized at 150 fps. Including 15 simulation
steps per visualized frame results in 25 fps. This amounts to
6.67 milliseconds per visualization step and 2.22 millisec-
onds per simulation step with our current implementation.
Without curvature correction each visualization of a frame
takes 5.26 milliseconds (190 fps).

As a test for the mapping of a high resolution surface onto
a very low resolution set of nodes we used the dragon model
[Sta] consisting of 9.971 faces controlled by just 18 nodes.
In figure 6 the dragon is visualized with the two variations
of triangle-basis based mapping from section3.3.

The visual difference between the one-to-one mapping
of node positions to vertex positions and the triangle-basis
based mapping with offsets to vertex positions can be in-
spected in figure2.

3.5. Discussion and conclusion

We use the GPU hardware for both visualization and cal-
culation of deformation. It is important to realize that the
speed of both simulationand the visualization of the spring
mass system is faster than a conventional CPU implemen-
tation. The GPU implementation of the spring mass system
without visualization is 20 to 30 times faster than a simi-
lar CPU implementation [MHS05]. Secondly, the GPU can
cache the highly detailed surface for visualization in the case
of the GPU based simulation because the definition of ver-
tex attributes does not change. A CPU implementation of a
spring-mass system cannot use this technique because new
vertex positions are calculated every frame, and these need
to be sent to the GPU.

The visualization methods presented have various trade-
offs that must be considered in choosing which visualiza-
tion technique to use. Using triangle-basis based mapping,

as presented in section3.3, allows us to decouple visualiza-
tion and simulation. This allows e.g. visualization of higher
resolution or smoother appearance than the set of simulation
nodes represents, see figure2. If this is not necessary, the
simpler one-to-one mapping can be used instead. If tangent-
space based shading is to be used, e.g. for normal mapping,
the one-to-one mapping does no directly support this since
only an approximate normal is available. In such cases the
triangle-basis based mapping is useful even if an offset vec-
tor is not needed.

The triangle-basis based mapping can be simplified some-
what if we assume that the offset is always along the dy-
namically calculated normal. In that case we do not need to
create the triangle basis to express the offset vector. We still
need to perform three vertex texture-lookups to interpolate
the approximate normals though. Remember, the construc-
tion of the triangle basis is still necessary though if we wish
express other vectors in the deforming space defined by the
triangle - e.g. to use normal mapping.

The approximate normal~Na (see equation (3)) depends
on certain properties of the nodes. The method is most ef-
fective if the nodes are arranged in a regular grid, since this
guarantees that the neighbours are evenly distributed for cal-
culation of the approximate normal. Very important, there
must exist a neighbour that adds to the approximate normal
in the direction of the desired surface normal. A thin cloth
simulation would not provide correct approximate normals
since nodes are only connected in two dimensions. There is
no additional neighbour in the third dimension to force the
approximate normals to point outwards from the cloth. In
the surgical simulator this means that we cannot use the cur-
rent approximate normals at parts of the organ with just one
node depth. The triangle-basis based mapping that corrects
for curvature through the approximate normals naturally has
the same dependence on the property of nodes. The triangle-
basis based mapping with a constant triangle basis across
triangles can be used instead to visualize the geometry in
these cases. The heart model in figure1 is rendered with the
triangle-basis based mapping without correction for curva-
ture because parts of the blood-vessels are simulated as "one
node thin" sheets.

If the offset vector in triangle-basis based mapping is suf-
ficiently short compared to the relative resolution of the set
of nodes or if the reference point is close to a node, we can
leave out correction for curvature without compromising the
visual appearance. In the case of the heart presented in figure
1 the correction for curvature can be left out, but in the case
of the dragon in figure6 the difference is very evident.

3.6. Future work

It would be interesting to look into the possibilities of an
automatic level of detail (LOD) in the spring-mass simula-
tion coupled with the triangle-basis based visualization. This

c© The Eurographics Association 2005.

J. Mosegaard & T. S. Sørensen / Real-time Deformation of Detailed Geometry on the GPU

would enable a seamless change between resolutions of sim-
ulation because each level of the LOD can be mapped to the
same high-resolution surface. Dynamic LOD could be im-
plemented by exploiting hardware accelerated linear interpo-
lation of texture lookups. Such a representation would prob-
ably include some hierarchical representation of vertices and
nodes on the GPU, and could possibly also be used as an ac-
celeration structure for intersection tests without the transfer
of data to the CPU.

In cases when the triangle-basis based mapping with cor-
rection for curvature is the preferred method of visualization
but the approximate normal is not well defined for all nodes,
the two methods could be combined. In pre-processing on
the CPU we could identify the problematic nodes and use
the mapping without correction for curvature for these ver-
tices only. The choice of method could be included as a per-
vertex attribute to let the vertex program choose between the
two methods on a per-vertex basis.

In a normal utilization of the graphics pipeline for drawing
geometry, fragment processing is conserved through depth-
buffer culling. In future work we will look into removing
part of the potentially large amounts of computation done
for verticesthat are hidden by other geometry. In vertex pro-
grams we have no equivalent to depth-buffer culling of frag-
ments though, since the information is not available until we
have calculated the vertex positions. Through utilization of
the low-resolution set of nodes and approximate normals,
some information is available though.

Acknowledgements

Funding by the Danish Research Agency (grant #2059-03-
0004).

References

[BFGS03] BOLZ J., FARMER I., GRINSPUN E.,
SCHRÖODER P.: Sparse matrix solvers on the gpu:
conjugate gradients and multigrid.ACM Trans. Graph.
22, 3 (2003), 917–924.

[Bli78] B LINN J. F.: Simulation of wrinkled surfaces. In
Proc. SIGGRAPH’78(1978), pp. 286–292.

[BP04] BUCK I., PURCELL T.: A toolkit for computation
on gpus. InGPU Gems, Fernando R., (Ed.). Addison-
Wesley, 2004, ch. 37.

[Coo84] COOK R. L.: Shade trees. InSIGGRAPH
’84: Proceedings of the 11th annual conference on Com-
puter graphics and interactive techniques(New York, NY,
USA, 1984), ACM Press, pp. 223–231.

[HCSL02] HARRIS M. J., COOMBE G., SCHEUERMANN

T., LASTRA A.: Physically-based visual simulation
on graphics hardware. InHWWS ’02: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware(Aire-la-Ville, Switzerland, Switzer-
land, 2002), Eurographics Association, pp. 109–118.

[HEGD04] HIRCHE J., EHLERT A., GUTHE S.,
DOGGETT M.: Hardware accelerated per-pixel dis-
placement mapping. InGI ’04: Proceedings of the
2004 conference on Graphics interface(School of
Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, 2004), Canadian Human-Computer
Communications Society, pp. 153–158.

[Kry05] K RYACHKO Y.: Using vertex texture displace-
ment for realistic water rendering. InGPU Gems 2, Fer-
nando R., (Ed.). Addison-Wesley, 2005, ch. 18.

[KTI ∗01] KANEKO T., TAKAHEI T., INAMI M.,
KAWAKAMI N., YANAGIDA Y., MAEDA T., TACHI S.:
Detailed shape representation with parallax mapping. In
Proc. ICAT(2001), pp. 205–208.

[MHS05] MOSEGAARD J., HERBORG P., SØRENSEN

T. S.: A gpu accelerated spring mass system for surgi-
cal simulation. InProc. Medicine Meets Virtual Reality
13 (2005), vol. 111, pp. 342–348.

[MS05] MOSEGAARD J., SØRENSENT. S.: Gpu accel-
erated surgical simulators for complex morphology. In
Proc. Virtual Reality(2005), pp. 147–153,323.

[Sta] STANFORD UNIVERSITY, COMPUTER GRAPHICS

LABORATORY: Dragon, the stanford 3d scanning
repository. http://graphics.stanford.edu/data/
3Dscanrep.

[WWT∗03] WANG L., WANG X., TONG X., L IN S., HU

S., GUO B., SHUM H.-Y.: View-dependent displacement
mapping.ACM Trans. Graph. 22, 3 (2003), 334–339.

c© The Eurographics Association 2005.

