

A GPU Accelerated Spring Mass System for
Surgical Simulation

Jesper MOSEGAARD#¤, Peder HERBORG¤, and Thomas Sangild SØRENSEN¤
#Department of Computer Science, ¤Centre for Advanced Visualization and Interaction,

University of Aarhus, Denmark

Abstract. There is a growing demand for surgical simulators to do
fast and precise calculations of tissue deformation to simulate
increasingly complex morphology in real-time. Unfortunately, even
fast spring-mass based systems have slow convergence rates for large
models. This paper presents a method to accelerate computation of a
spring-mass system in order to simulate a complex organ such as the
heart. This acceleration is achieved by taking advantage of modern
graphics processing units (GPU).

1. Problem

In recent years simulators have
been introduced in the surgical
curriculum in several fields [1].
Many surgical simulators used in
practice are based on spring-mass
deformable models [2] due to
performance reasons. The spring-
mass model is considered
physically based and achieves
real-time visualization and fast
convergence for geometry of
moderate size.
 In surgical simulation in
general, there is a tradeoff
between the costs of calculations,
how realistic the tissue-deformation is reproduced, and how detailed the morphology being
simulated appears. It is the goal of this paper to simulate a very high degree of
morphological detail in real-time. As an example, the cardiac morphology is complex and
requires a high degree of geometric detail to be modeled accurately.
 We present a surgical simulator based on a spring-mass system accelerated by an
implementation on the graphics processing unit (GPU). The purpose is to achieve a
considerable speedup due to the parallel processing capabilities of the GPU [3]. This
acceleration could be used to increase the accuracy and convergence of the numerical
calculations and to increase the complexity of the simulated morphology. Previously,
simple spring-mass systems have been implemented on the GPU (e.g. [4]). However, they
were limited to simple shapes. Slow data transfer from the GPU to the CPU has been an

Figure 1. The Cardiac Surgery Simulator on a pig heart

additional bottleneck when handling interaction and visualization. With the recent
generation of GPUs (Geforce 6800, Nvidia, USA) simulation, interaction, and visualization
of a spring-mass based surgical simulator can be accelerated on the GPU. To our
knowledge we present the first implementation of a fully GPU-based surgical simulator.
The driving force behind the current research is the development of a virtual training
system for complex interventions in congenitally malformed hearts [5][2], see Figure 1.
The approach however, is general and can be applied to other organs directly.

2. Methodology

2.1 Spring-Mass System

The GPU spring-mass implementation is based on the basic linear spring-mass formulation
where each particle xi with mass mi is given by the following 2nd order differential equation:

∑ ++−=
j iijiiii fgxyxm &&&

where yi is the damping factor and fi is the external forces. gij is the force vector defined by
spring stiffness kij, spring rest length lij and particle positions xi and xj as:

ji

ji
jiijijij

xx

xx
xxlkg

−

−
−−=)(

2
1

The differential equation can be solved with standard numerical methods, such as the verlet
integration [6]:

2)()()(2)(htxhtxtxhtx &&+−−=+

2.2 GPU Pipeline

The focus of this paper is to express the calculation of the spring-mass system effectively in
terms of the hardware accelerated features of the GPU. Recently, the vertex processor and
fragment processor have become programmable. Both processors are parallel processors
with a number of pipelines working simultaneously. Vertex and fragment computation can
depend on previous iterations through texture lookups and render-to-texture functionality
exposed through Pixel Buffers (PBuffers). The PBuffer can be bound as the rendering
target and as a texture. Throughout this paper we will refer to the PBuffer as a texture or as
the rendering target interchangeably depending on the context. Using floating point texture
extensions we can do computation on IEEE 32 bit floating point numbers. These features
enable general purpose computation on the GPU.

2.3 A Spring-Mass System with Implicit Connections

To calculate spring forces and perform verlet integration a fragment program was
developed. The fragment processor was chosen as there are generally more fragment
pipelines available than vertex pipelines. Equally important, texture lookups are more
efficient in fragment programs. We associate the position of each particle with a single
fragment in a PBuffer. The PBuffer is referred to as the position-texture. The fragment
program is responsible for calculating forces affecting each particle, doing verlet
integration, and outputting the calculated position to the associated fragment in the

position-texture. Each fragment receives a
texture coordinate as input, which gives the
position of the associated particle through a
texture lookup.
 To calculate the forces affecting particles
we need to fetch the position of neighboring
particles connected through springs. The most
important choice in our implementation and
the major source of the performance we
achieve is that we use only one texture lookup
to obtain the position of each neighbor particle.

The texture coordinates needed to lookup neighboring particles is given directly as input to
the fragment program from the output of the vertex program. To avoid that the vertex
processor becomes a bottleneck by rendering individual fragments as geometry, we
conceptually invoke the fragment computation with a single quad covering the position-
texture. Texture coordinates are specified for each vertex and interpolated automatically by
the rasterizer before being received as input in the fragment programs. This means that
particles must be connected in such a way that their neighbors can be fetched from per
vertex interpolated texture-coordinates. That is, particles should be connected in a fixed
pattern. We use a 3D grid as depicted in Figure 2 to construct a spring-mass system with
eighteen springs constraining axis aligned changes as well as shearing.
 The grid must be mapped to the two-dimensional position-texture to use the proposed
approach. This is achieved through a derivation of the flat 3d-texture approach [7], see
Figure 3. Each vertex rendered to invoke fragment computation will be given eighteen
texture coordinates offset a fixed amount from the texture coordinates identifying the
particle, see Figure 4. Instead of the conceptual model of rendering only one quad to invoke
full fragment computation, it is necessary to render five quads with texture-coordinates
constructed to take into account the border-cases of the flat 3d-texture approach.
 After each iteration, the PBuffer that was rendered to is bound as a texture and used for
input to subsequent iterations. The verlet integration depends on the previous two
calculated positions; consequently we cycle three PBuffers containing the old, current and
new positions.
 As in [4] the geometry is connected in a regular grid. Unlike [4] however, we operate on
a 3D grid. The grid must furthermore approximate an arbitrary geometry. Hence, it is
necessary to exclude some of the particles in the grid. Conceptually we carve out the
morphology in the grid of particles. Grid points are active particles in the simulation if
inside the myocardium or a vessel wall and otherwise discarded with a depth-buffer based
cull. See Figure 5 for an example.

a) b)

Figure 2. Particle connectivity in a 3D grid. Each particle
a) is connected to 18 neighbors b) (blocking the black

particle)

h

w

d

s1

s1 s2

sd

…

… sd-1

h

w
Figure 3. The flat 3d-texture approach. The 3D volume of voxels is

mapped to a 2d texture by laying out each of the d slices of size
h·w in the 2d texture one after another. The slices are padded
with elements containing unique alpha values of zero to detect

the volume borders.

Figure 4. The solid box represents the

quad drawn to invoke fragment
processing. Solid spheres represent
texture coordinates to the particles

themselves. The dotted box and spheres
represent one of the eighteen neighbors;
the top left neighbor offset with texture
coordinate (1,-1) in comparison to the

solid box.

2.4 Visualization and Interaction

To visualize the calculated positions we need to define vertex positions of a surface based
on position-texture values. Since a large amount of grid-points are not associated to
particles, a visualization based on vertex texture fetches is advantageous compared to a
transfer of the entire position-texture to either the CPU or directly to a vertex buffer.
Through vertex texture fetches we transfer only particles that are part of the surface of the
mesh. The geometry specified to the 3D API to visualize the current simulation-step is a
static mesh where each vertex is associated to a particle through a per vertex specified
texture coordinate. Through texture lookups in the vertex program we can fetch the current
position of the particle. We hereby defined a mapping from one surface vertex of the
visualization to one particle on the surface of the spring-mass system.
 The vertex-normal (indicating the curvature of the surface) to be used for shading is
approximated by the normalized sum of all normalized vectors from particle neighbors to
the particle in question. This value is already calculated as part of the force computation,
packed into the position-texture as the alpha component.
 To handle grabbing, the collision detection is done on the CPU based on a single
read-back of the position-texture when grabbing is initiated. Subsequently we render the
position of grabbed particles, based on the interaction device, as geometric primitives
directly into the fragments corresponding to the grabbed particles. We hereby override the
simulation results.
 The collision detection for cutting is also done on the CPU based on a single read-back
of the position-texture. As a result of cutting, we furthermore need to change the static
mesh rendered for visualization. Because the connectivity between particles is implicitly
based on their location in the position texture, the smallest incision possible in the proposed
model is two springs wide – by removing a particle. To support incisions as small as a
single spring, we extend the proposed model. If a spring is erased, we will setup the
invocation of fragment computation so that the connected particles receive invalid texture
coordinates for that spring whereby the spring is considered non-existing in the fragment
program doing the spring-mass computations. This means that we need to render additional
geometric primitives for each particle that is missing springs. The added granularity comes
at the cost of performance because additional vertex processing and fragment processing is
necessary – this approach is advantageous when we only make small cuts in the
morphology.

2.5 Hardware and Test-case

A Gainward CoolFX Ultra/2600 graphics card in a Pentium 4 3 GHz was used for the
presented simulation and visualization. A detailed (630.000 faces) model of a pig heart was
reconstructed from a CT dataset using the marching cubes algorithm [8]. Additionally, a
model with lower resolution (42.745 grid points) was obtained. The spring-mass simulation
was performed on the latter which was normal-mapped to visually appear as detailed as the
higher resolution model (Melody, Nvidia, USA).

Figure 5. The position-texture of a 42.745 particle pig heart. White areas are grid points not associated with particles.

3. Results

The GPU spring-mass system was implemented in OpenGL, C++, Cg,
NV_fragment_program2 and NV_vertex_program3 and compiled with Visual Studio C++.
As a comparison for the GPU implementation a CPU implementation was implemented in
C++ and compiled in Visual Studio C++. The CPU spring-mass system is a port of the
GPU implementation. The resulting performances can be seen in Table 1.
 We have extended the Cardiac Surgical Simulator [2] to support GPU based spring-mass
systems. A real-time system simulating and visualizing the deformable heart was
implemented. Screenshots are seen in Figure 6. In a setup where we do six iterations before
visualizing, the simulation runs at 192 iterations per second and 32 frames visualized per
second. The simulation step alone could be run at 219 iterations per second.

4. Discussion and Conclusion

We successfully expressed the spring-mass
model in terms of the GPU. This is seen from
Table 1 as a noticeable speedup compared to a
similar CPU implementation. This speedup can
be used to model and simulate morphology
with a larger number of primitives than
previously seen as well as faster numerical
calculations. An added geometrical detail is
expected to more accurately simulate complex
organs such as the heart.
 In the past decade, GPU performance
growth has exceeded that of the CPU [9]. This

 a) b)

Figure 6. A pig heart consisting of 42.745 particles in a regular grid reconstructed from a CT data set. We illustrate a)
cutting and b) deformation by grabbing.

Table 1. Iterations per second (excluding

visualization) with the CPU spring-
mass and GPU spring-mass
implementations.

Method

Nodes
CPU GPU GPU /

CPU
speedup

10.000 45,8 839,8 18,7

20.000 20,2 476,9 23,6

40.000 9,9 264,6 26,9

50.000 7,8 218,0 28,1

100.000 3,3 104,1 31,4

is expected to extrapolate well into the future. Hence the acceleration factor is expected to
grow correspondingly.
 With a CPU based simulation it is a potential bottleneck to visualize particle-positions
since this requires a transfer of vertex attributes each frame. Visualization of the GPU based
solution has the advantage that the surface-mesh is cached in video memory since there are
no CPU based changes.
 If we consider a standard spring-mass implementation, there are many improvements
that can accelerate the simulation on the CPU. These might, however, not be easily ported
to the GPU. Hence, the presented speedup is not to be interpreted as a speedup compared to
the fastest CPU implementation available.
 In cases where the spring-mass model is not considered adequate, other physically based
models of deformation could be ported to the GPU following the principles of this paper.

5. Future Work

The current visualization is based on a mapping from one surface particle of the simulation
to one surface vertex of the visualization. A more flexible mapping would enable us to
decouple the details of visualization and simulation. This would enable a smoother
appearance of the proposed spring mass implementation.
 Future work should also include studies on how the GPU and CPU can work more
closely together. In the presented solution, the CPU is not utilized efficiently because the
transfer of data from the GPU to the CPU becomes a bottleneck. When this communication
becomes faster (i.e. through PCI-express), we must consider what kind of processing is
suitable for the GPU and CPU.
 The clinical significance of the added morphological detail as well as clinical use of the
Cardiac Surgery Simulator will be examined.

Acknowledgements

We acknowledge pediatric heart surgeons Vibeke Hjortdal and Ole Kromann Hansen for
their clinical feedback. For the data acquisition we acknowledge the contributions of Dr.
Gerald Greil and Dr. Axel Kuettner, University of Tübingen, Germany as well as Dr. T.
Flohr and Dr. I. Wolf.

References

[1] Richard M. Satava. Accomplishments and challenges of surgical simulation. Surg Endosc;, 15(3), pp 232-

41, 2001.
[2] Jesper Mosegaard. LR-spring-mass model for cardiac surgical simulation. Medicine Meets Virtual Reality

12, pp 256-258, 2003.
[3] Chris J. Thompson , Sahngyun Hahn and Mark Oskin. Using modern graphics architectures for general-

purpose computing: a framework and analysis. Proceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecture., pp 306—317, 2002.

[4] Simon Green. OpenGL Shader Tricks. Game Developers Conference, 2003.
[5] Thomas S. Sørensen, Erik M. Pedersen, Ole K. Hansen, Keld Sørensen. Visualization of morphological

details in congenitally malformed hearts. Cardiol Young; 13(5), pp 451-60, 2003.
[6] Loup Verlet. Computer Experiments on Classical Fluids. I. Thermodynamical. Properties of Lennard-

Jones Molecules. Physical Review, Vol. 159, pp 98–103, 1967.
[7] Mark J. Harris, William V. Baxter III, Thorsten Scheuermann and Anselmo Lastra. Simulation of Cloud

Dynamics on Graphics Hardware. Proceedings of Graphics Hardware, pp 92-101, 2003.
[8] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Resolution 3D Surface Construction

Algorithm, Computer Graphics (Proceedings of SIGGRAPH '87), Vol. 21, No. 4, pp. 163-169, 1987.
[9] Buck I, Purcell T. A toolkit for computation on GPUs. GPU Gems. Addison Wesley 2004.

