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Abstract. There is a growing demand for surgical simulators to do 
fast and precise calculations of tissue deformation to simulate 
increasingly complex morphology in real-time. Unfortunately, even 
fast spring-mass based systems have slow convergence rates for large 
models. This paper presents a method to accelerate computation of a 
spring-mass system in order to simulate a complex organ such as the 
heart. This acceleration is achieved by taking advantage of modern 
graphics processing units (GPU). 

 
 
 
1. Problem 
 
In recent years simulators have 
been introduced in the surgical 
curriculum in several fields [1]. 
Many surgical simulators used in 
practice are based on spring-mass 
deformable models [2] due to 
performance reasons. The spring-
mass model is considered 
physically based and achieves 
real-time visualization and fast 
convergence for geometry of 
moderate size. 
 In surgical simulation in 
general, there is a tradeoff 
between the costs of calculations, 
how realistic the tissue-deformation is reproduced, and how detailed the morphology being 
simulated appears. It is the goal of this paper to simulate a very high degree of 
morphological detail in real-time. As an example, the cardiac morphology is complex and 
requires a high degree of geometric detail to be modeled accurately. 
 We present a surgical simulator based on a spring-mass system accelerated by an 
implementation on the graphics processing unit (GPU). The purpose is to achieve a 
considerable speedup due to the parallel processing capabilities of the GPU [3]. This 
acceleration could be used to increase the accuracy and convergence of the numerical 
calculations and to increase the complexity of the simulated morphology. Previously, 
simple spring-mass systems have been implemented on the GPU (e.g. [4]). However, they 
were limited to simple shapes. Slow data transfer from the GPU to the CPU has been an 

 

 
Figure 1. The Cardiac Surgery Simulator on a pig heart 



additional bottleneck when handling interaction and visualization. With the recent 
generation of GPUs (Geforce 6800, Nvidia, USA) simulation, interaction, and visualization 
of a spring-mass based surgical simulator can be accelerated on the GPU. To our 
knowledge we present the first implementation of a fully GPU-based surgical simulator. 
The driving force behind the current research is the development of a virtual training 
system for complex interventions in congenitally malformed hearts [5][2], see Figure 1. 
The approach however, is general and can be applied to other organs directly. 
 
 
2. Methodology 
 
 
2.1 Spring-Mass System 
 
The GPU spring-mass implementation is based on the basic linear spring-mass formulation 
where each particle xi with mass mi is given by the following 2nd order differential equation: 
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where yi is the damping factor and fi is the external forces. gij is the force vector defined by 
spring stiffness kij, spring rest length lij and particle positions xi  and xj as: 
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The differential equation can be solved with standard numerical methods, such as the verlet 
integration [6]: 
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2.2 GPU Pipeline 
 
The focus of this paper is to express the calculation of the spring-mass system effectively in 
terms of the hardware accelerated features of the GPU. Recently, the vertex processor and 
fragment processor have become programmable. Both processors are parallel processors 
with a number of pipelines working simultaneously. Vertex and fragment computation can 
depend on previous iterations through texture lookups and render-to-texture functionality 
exposed through Pixel Buffers (PBuffers). The PBuffer can be bound as the rendering 
target and as a texture. Throughout this paper we will refer to the PBuffer as a texture or as 
the rendering target interchangeably depending on the context. Using floating point texture 
extensions we can do computation on IEEE 32 bit floating point numbers. These features 
enable general purpose computation on the GPU. 
 
 
2.3 A Spring-Mass System with Implicit Connections 
 
To calculate spring forces and perform verlet integration a fragment program was 
developed. The fragment processor was chosen as there are generally more fragment 
pipelines available than vertex pipelines. Equally important, texture lookups are more 
efficient in fragment programs. We associate the position of each particle with a single 
fragment in a PBuffer. The PBuffer is referred to as the position-texture. The fragment 
program is responsible for calculating forces affecting each particle, doing verlet 
integration, and outputting the calculated position to the associated fragment in the 



position-texture. Each fragment receives a 
texture coordinate as input, which gives the 
position of the associated particle through a 
texture lookup. 
 To calculate the forces affecting particles 
we need to fetch the position of neighboring 
particles connected through springs. The most 
important choice in our implementation and 
the major source of the performance we 
achieve is that we use only one texture lookup 
to obtain the position of each neighbor particle. 

The texture coordinates needed to lookup neighboring particles is given directly as input to 
the fragment program from the output of the vertex program. To avoid that the vertex 
processor becomes a bottleneck by rendering individual fragments as geometry, we 
conceptually invoke the fragment computation with a single quad covering the position-
texture. Texture coordinates are specified for each vertex and interpolated automatically by 
the rasterizer before being received as input in the fragment programs. This means that 
particles must be connected in such a way that their neighbors can be fetched from per 
vertex interpolated texture-coordinates. That is, particles should be connected in a fixed 
pattern. We use a 3D grid as depicted in Figure 2 to construct a spring-mass system with 
eighteen springs constraining axis aligned changes as well as shearing. 
 The grid must be mapped to the two-dimensional position-texture to use the proposed 
approach. This is achieved through a derivation of the flat 3d-texture approach [7], see 
Figure 3. Each vertex rendered to invoke fragment computation will be given eighteen 
texture coordinates offset a fixed amount from the texture coordinates identifying the 
particle, see Figure 4. Instead of the conceptual model of rendering only one quad to invoke 
full fragment computation, it is necessary to render five quads with texture-coordinates 
constructed to take into account the border-cases of the flat 3d-texture approach. 
 After each iteration, the PBuffer that was rendered to is bound as a texture and used for 
input to subsequent iterations. The verlet integration depends on the previous two 
calculated positions; consequently we cycle three PBuffers containing the old, current and 
new positions. 
 As in [4] the geometry is connected in a regular grid. Unlike [4] however, we operate on 
a 3D grid. The grid must furthermore approximate an arbitrary geometry. Hence, it is 
necessary to exclude some of the particles in the grid. Conceptually we carve out the 
morphology in the grid of particles. Grid points are active particles in the simulation if 
inside the myocardium or a vessel wall and otherwise discarded with a depth-buffer based 
cull. See Figure 5 for an example. 
 

 

 
 

a)                                                    b) 

Figure 2. Particle connectivity in a 3D grid. Each particle 
a) is connected to 18 neighbors b) (blocking the black 

particle) 
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Figure 3. The flat 3d-texture approach. The 3D volume of voxels is 

mapped to a 2d texture by laying out each of the d slices of size 
h·w in the 2d texture one after another. The slices are padded 
with elements containing unique alpha values of zero to detect 

the volume borders. 

 

 
Figure 4. The solid box represents the 

quad drawn to invoke fragment 
processing.  Solid spheres represent 
texture coordinates to the particles 

themselves. The dotted box and spheres 
represent one of the eighteen neighbors; 
the top left neighbor offset with texture 
coordinate (1,-1) in comparison to the 

solid box. 



2.4 Visualization and Interaction 
 
To visualize the calculated positions we need to define vertex positions of a surface based 
on position-texture values. Since a large amount of grid-points are not associated to 
particles, a visualization based on vertex texture fetches is advantageous compared to a 
transfer of the entire position-texture to either the CPU or directly to a vertex buffer. 
Through vertex texture fetches we transfer only particles that are part of the surface of the 
mesh. The geometry specified to the 3D API to visualize the current simulation-step is a 
static mesh where each vertex is associated to a particle through a per vertex specified 
texture coordinate. Through texture lookups in the vertex program we can fetch the current 
position of the particle. We hereby defined a mapping from one surface vertex of the 
visualization to one particle on the surface of the spring-mass system. 
 The vertex-normal (indicating the curvature of the surface) to be used for shading is 
approximated by the normalized sum of all normalized vectors from particle neighbors to 
the particle in question. This value is already calculated as part of the force computation, 
packed into the position-texture as the alpha component. 
  To handle grabbing, the collision detection is done on the CPU based on a single 
read-back of the position-texture when grabbing is initiated. Subsequently we render the 
position of grabbed particles, based on the interaction device, as geometric primitives 
directly into the fragments corresponding to the grabbed particles. We hereby override the 
simulation results. 
 The collision detection for cutting is also done on the CPU based on a single read-back 
of the position-texture. As a result of cutting, we furthermore need to change the static 
mesh rendered for visualization. Because the connectivity between particles is implicitly 
based on their location in the position texture, the smallest incision possible in the proposed 
model is two springs wide – by removing a particle. To support incisions as small as a 
single spring, we extend the proposed model. If a spring is erased, we will setup the 
invocation of fragment computation so that the connected particles receive invalid texture 
coordinates for that spring whereby the spring is considered non-existing in the fragment 
program doing the spring-mass computations. This means that we need to render additional 
geometric primitives for each particle that is missing springs. The added granularity comes 
at the cost of performance because additional vertex processing and fragment processing is 
necessary – this approach is advantageous when we only make small cuts in the 
morphology. 
 
2.5 Hardware and Test-case 
 
A Gainward CoolFX Ultra/2600 graphics card in a Pentium 4 3 GHz was used for the 
presented simulation and visualization. A detailed (630.000 faces) model of a pig heart was 
reconstructed from a CT dataset using the marching cubes algorithm [8]. Additionally, a 
model with lower resolution (42.745 grid points) was obtained. The spring-mass simulation 
was performed on the latter which was normal-mapped to visually appear as detailed as the 
higher resolution model (Melody, Nvidia, USA). 
 

 
Figure 5. The position-texture of a 42.745 particle pig heart. White areas are grid points not associated with particles. 



 
3. Results 
 
The GPU spring-mass system was implemented in OpenGL, C++, Cg, 
NV_fragment_program2 and NV_vertex_program3 and compiled with Visual Studio C++. 
As a comparison for the GPU implementation a CPU implementation was implemented in 
C++ and compiled in Visual Studio C++. The CPU spring-mass system is a port of the 
GPU implementation. The resulting performances can be seen in Table 1. 
 We have extended the Cardiac Surgical Simulator [2] to support GPU based spring-mass 
systems. A real-time system simulating and visualizing the deformable heart was 
implemented. Screenshots are seen in Figure 6. In a setup where we do six iterations before 
visualizing, the simulation runs at 192 iterations per second and 32 frames visualized per 
second. The simulation step alone could be run at 219 iterations per second. 
 
 
4. Discussion and Conclusion 
 
We successfully expressed the spring-mass 
model in terms of the GPU. This is seen from 
Table 1 as a noticeable speedup compared to a 
similar CPU implementation. This speedup can 
be used to model and simulate morphology 
with a larger number of primitives than 
previously seen as well as faster numerical 
calculations. An added geometrical detail is 
expected to more accurately simulate complex 
organs such as the heart. 
 In the past decade, GPU performance 
growth has exceeded that of the CPU [9]. This 

 
                                                a)                                                                                                                b) 

Figure 6. A pig heart consisting of 42.745 particles in a regular grid reconstructed from a CT data set. We illustrate a) 
cutting and b) deformation by grabbing. 

 
 
Table 1. Iterations per second (excluding 

visualization) with the CPU spring-
mass and GPU spring-mass 
implementations. 

 
Method 

Nodes 
CPU GPU GPU / 

CPU 
speedup 

10.000 45,8 839,8 18,7 

20.000 20,2 476,9 23,6 

40.000 9,9 264,6 26,9 

50.000 7,8 218,0 28,1 

100.000 3,3 104,1 31,4 



is expected to extrapolate well into the future. Hence the acceleration factor is expected to 
grow correspondingly.  
 With a CPU based simulation it is a potential bottleneck to visualize particle-positions 
since this requires a transfer of vertex attributes each frame. Visualization of the GPU based 
solution has the advantage that the surface-mesh is cached in video memory since there are 
no CPU based changes.  
 If we consider a standard spring-mass implementation, there are many improvements 
that can accelerate the simulation on the CPU. These might, however, not be easily ported 
to the GPU. Hence, the presented speedup is not to be interpreted as a speedup compared to 
the fastest CPU implementation available. 
 In cases where the spring-mass model is not considered adequate, other physically based 
models of deformation could be ported to the GPU following the principles of this paper. 
 
 
5. Future Work 
 
The current visualization is based on a mapping from one surface particle of the simulation  
to one surface vertex of the visualization. A more flexible mapping would enable us to 
decouple the details of visualization and simulation. This would enable a smoother 
appearance of the proposed spring mass implementation. 
 Future work should also include studies on how the GPU and CPU can work more 
closely together. In the presented solution, the CPU is not utilized efficiently because the 
transfer of data from the GPU to the CPU becomes a bottleneck. When this communication 
becomes faster (i.e. through PCI-express), we must consider what kind of processing is 
suitable for the GPU and CPU.  
 The clinical significance of the added morphological detail as well as clinical use of the 
Cardiac Surgery Simulator will be examined. 
 
 
Acknowledgements 
 
We acknowledge pediatric heart surgeons Vibeke Hjortdal and Ole Kromann Hansen for 
their clinical feedback. For the data acquisition we acknowledge the contributions of Dr. 
Gerald Greil and Dr. Axel Kuettner, University of Tübingen, Germany as well as Dr. T. 
Flohr and Dr. I. Wolf.  
 
 
References 
 
[1] Richard M. Satava. Accomplishments and challenges of surgical simulation. Surg Endosc;, 15(3), pp 232-

41, 2001.  
[2] Jesper Mosegaard. LR-spring-mass model for cardiac surgical simulation. Medicine Meets Virtual Reality 

12, pp 256-258, 2003. 
[3] Chris J. Thompson , Sahngyun Hahn and Mark Oskin. Using modern graphics architectures for general-

purpose computing: a framework and analysis. Proceedings of the 35th annual ACM/IEEE international 
symposium on Microarchitecture., pp  306—317, 2002. 

[4] Simon Green. OpenGL Shader Tricks.  Game Developers Conference, 2003. 
[5] Thomas S. Sørensen, Erik M.  Pedersen, Ole K. Hansen,  Keld Sørensen. Visualization of morphological 

details in congenitally malformed hearts. Cardiol Young; 13(5), pp 451-60, 2003. 
[6] Loup Verlet. Computer Experiments on Classical Fluids. I. Thermodynamical. Properties of Lennard-

Jones Molecules. Physical Review, Vol. 159, pp 98–103, 1967. 
[7]  Mark J. Harris, William V. Baxter III, Thorsten Scheuermann and Anselmo Lastra. Simulation of Cloud 

Dynamics on Graphics Hardware. Proceedings of Graphics Hardware, pp 92-101, 2003. 
[8] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Resolution 3D Surface Construction 

Algorithm, Computer Graphics (Proceedings of SIGGRAPH '87), Vol. 21, No. 4, pp. 163-169, 1987. 
[9] Buck I, Purcell T. A toolkit for computation on GPUs. GPU Gems. Addison Wesley 2004.  


