
Teaching Programming to Liberal Arts Students
— a Narrative Media Approach

Peter Bøgh Andersen*, Jens Bennedsen, Steffen Brandorff+, Michael E. Caspersen and

Jesper Mosegaard

*Department of Computer Science
University of Aalborg, Denmark

pba@cs.auc.dk

+Department of Information
Studies

University of Aarhus, Denmark
sbrand@imv.au.dk

Department of Computer Science,
University of Aarhus, Denmark

{jbb, mec, mosegard}
@daimi.au.dk

Abstract
In this paper we present a new learning environment to be
used in an introductory programming course for students
that are non-majors in computer science, more precisely for
multimedia students with a liberal arts background.
Media-oriented programming adds new requirements to the
craft of programming (e.g. aesthetic and communicative).
We argue that multimedia students with a liberal arts back-
ground need programming competences because program-
mability is the defining characteristic of the computer me-
dium. We compare programming with the creation of tradi-
tional media products and identify two important differ-
ences which give rise to extra competences needed by mul-
timedia designers as opposed to traditional media product
designers. We analyze the development process of multi-
media products in order to incorporate this in the learning
process, and based on this we present our vision for a new
learning environment for an introductory programming
course for multimedia students.
We have designed a learning environment called Lingoland
with the new skills of media programming in mind that
hopefully can help alleviate the problems we have experi-
enced in teaching programming to liberal arts students.

1. Introduction
Teaching introductory programming to non-computer-
science students and in particular to multimedia students
with a liberal arts background is a big challenge for several

reasons (an in-depth discussion of this issue can be found
in [4] and [2]). Programming is not a primary interest of the
students and many students consider programming to be
“nerdy”. Most liberal arts students are more inclined to
“open-ended topics” in which analysis, discussion and
interpretation are core competencies, and are less inclined
to take interest in “closed, absolute topics” like math and
programming. Almost all students are lacking in mathe-
matical qualifications, or even worse: many are scared of
math and typically have had very bad school experience in
that subject. Consequently, most students are de-motivated
already at the outset and do not possess the habits and
qualifications that “normal” CS students do. For these and
other reasons it is necessary to approach the task of teach-
ing introductory programming to liberal arts students in a
new and untraditional way.
Our approach is based on an innovative learning environ-
ment, Lingoland, that is used in the first weeks of learning
the basics of programming in Lingo (the built-in language
of Macromedia’s media authoring tool, Director). This
paper is a presentation of our motivation for developing
Lingoland, the vision for it, as well as a brief description of
the product as it has materialized so far. (It is difficult to
pay justice to an interactive media like Lingoland in a pa-
per; we therefore invite the interested reader to visit
www.daimi.au.dk/lingoland/ for a more thorough presenta-
tion of the tool.)

2. Why multimedia students need programming
Given that teaching programming to multimedia students is
a big challenge, and that learning programming skills is
very frustrating, one might consider whether programming
skills are at all necessary for this group of students.
We believe it to be very important (as did Alan Kay and
Adele Goldberg when they invented Smalltalk [5]); the
main argument is the following [1]: for the past two hun-
dreds years, two cultures of research have differentiated
themselves. On one hand, Science sought the laws of nature
and put them to use in building tools and machines. On the

other hand, the Liberal Arts concerned themselves with
human culture and art, and applied their knowledge to ana-
lyzing and producing media objects, such as books, plays,
movies, television, and newspapers. But with the advent of
the computer, something came into the world that was a
tool, a machine and a medium at the same time. This fact
necessitates a re-negotiation of established knowledge
borders. Qua machine and medium, the computer requires
from its user both types of qualifications, and therefore the
liberal arts need to take an interest in utilizing its character-
istic features.
The basic characteristic of the computer medium is that it
can be programmed. This feature distinguishes the compu-
ter from other media, and enables the interactivity that most
people recognize as the unique new feature of this medium.
If multimedia students were allowed to study a curriculum
without programming, they would miss the defining cha-
racteristic of one of the media of interest, which again
would reduce their analyses and products concerning the
computer to replicas of old media works.

3. Competences for creation of interactive media

products
When we compare programming to the creation of tradi-
tional media products, we will focus on two important dif-
ferences:
1. Direct vs. indirect creation: In many traditional media

(literature, graphic art, etc.) the product is created di-
rectly by the designer. In programming, the product—
the program execution—is created indirectly through
the program which is a description of (an infinite num-
ber of) possible program executions. Programmers cre-
ate tools rather than works.

2. The temporal aspect: In some media, the designer has
full control over time. This is not the case in interactive
computer systems in which the user determines part of
the execution.

The creation of some media products (e.g. movie scripts,
drama, and music compositions) differ in this respect and
are similar to programming in respect to indirect creation.
In these art forms the author/composer will have to keep in
mind how his instructions in the manuscript or score will
be understood by the actors or performers.
A programmer does not produce a program execution di-
rectly, but must plan and write a description of the execu-
tion. Thus, programming involves a more analytical and
less directly involved stance than painting or writing.
The outcome of a programming effort is not a single tan-
gible “thing”, but rather a (possibly infinite) set of “execu-
tion instances”, each different from the other, but all based
on the description of the execution. Thus, the outcome of
programming can be considered as more abstract than the
result of e.g. painting.

These differences are caused by the inherent properties of
the computer media, and there is no escape: the students
must learn to handle them if they want to stay in the game.
However, this does not mean that pedagogical methods and
curricula should be transferred wholesale from the compu-
ter science traditions to interactive media. Most program-
ming curricula evolved in an earlier period in which com-
puter systems were automata or tools. In such applications,
predictability, robustness, and correctness are important
properties. In media applications, however, new require-
ments are added: like other media, they must be under-
standable, entertaining, aesthetically satisfying, educa-
tional, provocative, etc. Although the traditional media
skills, such as writing good texts or drawing instructive pic-
tures, are still important, programming skills are just as
indispensable, since they allow you to exploit the special
powers of computers to communicate your message.

4. The process of developing media products
The main function of a medium is to enable its user to cre-
ate attractive interpretations of the representations it carries.
The value of a media product lies in what it can mean to
somebody. If we cannot understand the subject of a text-
book we have bought, we have wasted our money; if the
newspaper does not give us interesting news we have rea-
son for complaint; and if the horror movie does not scare us
we want our money back.
The process of writing a book resembles the development
process for interactive media products and gives clues to
what we want to obtain in the learning process. A writer
moves phrases around and exchanges words in his manu-
script until he hits upon the formulation that best expresses
his thought. Similarly a painter keeps re-painting and cor-
recting until the image composition is as he envisioned.
This is a basic technique in media work, called commuta-
tion in linguistics: replace a property of a sign by another
property and observe the difference of meaning caused by
the change. Repeat until satisfied.
It follows that commutation could play an important part in
a media-oriented programming course, not only because it
is a good pedagogical trick, but also because it is a basic
professional technique the students must master.
Consequently we have to modify the traditional computer
science method, and object-orientation in particular, of first
building a model of the domain of interest, then devising
the functionality required by the application area, and final-
ly adding a suitable interface. Otherwise we risk construc-
ting a product e.g. a story that nobody will take any interest
in at all! The building of the model, the definition of func-
tionality, and the design of the interface must go hand in
hand.
Of course, not all aspects of an interactive media product
can be written with this direct link to the interface. A sculp-
tor must construct a steel scaffold that can maintain his
sculpture; likewise, the programmer will have to construct

an architecture that indirectly is a prerequisite for the ef-
fects that impact the user.

5. Lingoland – the vision
Theorists like Niklas Luhmann (cf. [8]) view communica-
tion as a “perturbation” of the already established closed
system of the learner. What the teacher can do is to challen-
ge, “irritate”, the student’s system; however it is the student
himself that must adapt to the irritation. A consequence of
this theory is the following: if you can present a program-
ming environment that the student can understand through
his current set of competences, and you are able to chal-
lenge these competences, this may cause the students to
change their preconceived notions about a subject. This is
another way of stating the old rule of “talking to students in
a language they know”. Liberal arts students often possess
a number of the qualifications involved in problem solving
at a general level, but most often have no explicit knowl-
edge hereof. If we choose a metaphor already known to
them, we could be halfway.
If one wants to learn a new foreign language, say German,
the most efficient approach is to spend some time among
Germans. We are not arguing that learning a programming
language is like learning a natural language, but we find the
metaphor of spending time among native speaking inhabi-
tants when learning a language useful also when it comes
to learning a programming language.
Like all metaphors, the metaphor of viewing programming
education as learning a new natural language breaks down
at some point. In order to support the metaphor from the
outset, the programming language is presented as the lan-
guage of mechanical creatures in a fictive world. Hopefully
the students will then accept the primitive and strange way
these machine-born creatures communicate.
In a media-oriented approach, learning a programming lan-
guage means to understand the meaning effects it can offer
to produce! What happens on the screen or in the loud-
speakers if I change this line of code to something else?
Does it change my story? Does it express what I want to
express?
We envisage a learning tool, Lingoland, to support the
learning of the programming language Lingo. The environ-
ment is designed to also meet the requirements of the other
part of the curriculum, media design. It builds on the game-
and-story metaphor. We have staged the learning process as
a game where we have left various lacunae open for the
students to discover and enhance. The student simply edits
scripts and watches the resulting behavior changes, switch-
ing back and forth between the so-called play mode (execu-
tion) and transform mode (scripting) of the tool.
 Moreover, Lingoland tries to move the students from the
game illusion they know into the world of programming,
from the “interface” to the “system”. In the user-interface
of the environment we graphically make explicit the chan-
ge from “playing the game” to “programming the game”

(transforming the rules of the game). In this respect it ex-
ploits the notion of “Verfremdung”1 in Brecht’s dramaturgy
[3].
The programming challenges unfold when the student wan-
ders around in the fictive world. All the inhabitants you
meet “speak” and understand Lingo. You learn by obser-
ving the way they behave, and you communicate with them
in their own language. In this respect Lingoland builds on
Papert’s well-known ideas of creating an abstract world of
mathematics [6].
One of the ways programming languages differ from natu-
ral languages is the required degree of formality and preci-
sion when communicating in the language. Through their
experience and education students with a liberal arts back-
ground have developed and refined a series of competences
used in discussion, communication, and life in general.
Such competences have a rich set of tools to deal with
inaccuracies, incompleteness, and errors but still works
satisfactorily in a great number of contexts. The flexibility
of this relies on the experience of the individual, based on
an ability to generalize and transfer conceptual structures.
In contrast programming requires precision and rigid for-
mal expressivity, as the recipient of the communication is a
machine. The computer does not possess even a minimum
of the customary social competences, implicitly expected
from any communication partner by the computer novice.
On the contrary, interpreters or compilers mercilessly track
down even the smallest of syntax errors and produce dis-
illusion, blocking the progress of the learner. The creatures
of Lingoland are not human and rather unfriendly to “non-
Lingoists” (i.e. the students) so students are forced to be
precise in the way that they express their communication.
Hopefully, this motivates formal and precise communica-
tion.
The best teaching environment is one that itself demonstra-
tes what is being taught, i.e. the environment should itself
be a good media product that stages the learning process.
There are two aspects of being a good multimedia product,
an external and an internal. From an external point of view,
the product must be understandable, entertaining, aestheti-
cally satisfying, educational, provocative, etc. From an

1 “Verfremdung” (or estrangement) means to historicize,
that is, consider people and incidents as historically condi-
tioned and transitory. The spectator will no longer see the
characters on stage as unalterable, uninfluencable, help-
lessly delivered over to their fate. He will see that his man
is such and such, because circumstances are such. And
circumstances are such, because man is such. But he in turn
is conceivable not only as he is now, but also as he might
be –that is, otherwise– and the same holds true for circum-
stances. Hence, the spectator obtains a new attitude in the
theatre. He will be received in the theatre as the great
“transformer”, who can intervene in the natural processes
and the social processes, and who no longer accepts the
world but masters it.

internal point of view the product must posses traditional
software engineering qualities such as modularity, low
coupling and high cohesion, etc. Good quality is hopefully
inspiring to the students, but more importantly it is necessa-
ry when demonstrating the system architecture: how inter-
face functionality and model works together.

6. Lingoland – the product
Lingoland is a game where you control a person walking
around and your mission is to rescue the world from vari-
ous evil viruses that have infected all the other inhabitants.
All inhabitants are products from a local software factory,
and the student’s final goal is to locate this plant and cor-
rect their production; only then, Lingoland will again be-
come the peaceful place it once was. During the mission
you are given a number of quests that have to be solved in
order to proceed and fulfil the mission.
A typical quest in the beginning is “There is going to be a
party for which we need some water, and agent Snegom is
going to get the water at the well and bring it to the barn,
where the party will take place. Snegom walks too far; you
must change his behaviour so that he only walks 50 steps
back and forth”. The mission is:

1. find the agent Snegom
2. look at the Lingo-code that defines his behaviour
3. change the code to make Snegom do the right thing
4. verify that the result is as desired.

Once Snegom is found, the student exits the play mode and
enters the transform mode. In transform mode all the active
objects in the game gets assigned a name. The student can
edit the behaviour of the desired object (Snegom) by invok-
ing an edit method on the edit tool and giving Snegom as a
parameter. This helps learning the student about method
calls and parameter passing.
When the edit method is invoked, the code for Snegom is
shown in a little box:

if distance>100 then
 ...
 distance=0
end if
distance=distance+1

This piece of code contains an if-statement that needs to be
altered in order to obtain the desired behaviour.
When returning to play mode, the behaviour of Snegom
changes right away and there is an immediate feedback to
the students (in case of a syntax error, the student is in-
formed about it by the agent and help is provided).
Later in the game the same topic is re-addressed. This time
the quest could be: “During the party we want to have some
nice flashing lights, but the fire-fly won’t flash. Find it and
make it flash, then we will have a nice party”. The student
does the same again (find the relevant object, change the
code that defines the behaviour of the object, and observe

the result), but this time there is no if-statement at the be-
ginning, the student has to figure it out by himself.
Later again, the quests are “phrased” in Lingo, and as the
quests get harder, the student has to use more advanced
problem solving techniques to modify and correct the crea-
tures of Lingoland. In this way the student is introduced to
the constructs of the programming language; in the begin-
ning the tasks are fairly easy, but gradually they become
harder and harder, and over time the student improves his
expressability in the language.
All the elements of Lingoland are written in Lingo. This
implies that the student can inspect the way they are written
and learn from this. This also gives him the idea that pro-
gramming can be used for writing educational software and
games and hence motivates the need for learning program-
ming.
Lingoland has a strict object-oriented user interface where
all interaction takes place through method invocations on
objects. Even the editor that is used to transform the Lingo-
land objects is an object and the interaction with it reflects
that. In this way the students learns to solve a problem by
finding (and, eventually, creating) suitable objects with
relevant methods for solving the problem.
To support the “Verfremdung” (see §5) that challenges stu-
dents not only to play but also to think, we clearly signal a
mode change from play mode (see figure 1) to transform
mode (transforming/creating behaviours in Lingo – see fi-
gure 2). When you exit the game and enter transform mode,
a semi-transparent lid slides over the Lingoland world and
presents the world as contained in a machine-like device.
The fictive world turns out to be an illusion running on a
machine. The student can still see the world through the lid
but is no longer a participant – now he is creating or modi-
fying it.

Figure 1: Lingoland (play mode)

The product is designed as a framework. In the framework
there are two aspects: the game-story and the learning ob-
jectives, and in the system architecture these two aspects
are clearly separated. The story and quests are generated

on-the-fly according to the learning objectives defined by
the teacher and the progress of the student. In the frame-
work the teacher define learning objectives and how these
objectives can be made concrete in Lingoland by quests.
This implies that different pedagogies can be used. In the
example above a spiral approach is use, but it is up to the
designer of the story and learning objectives to make the
decision. Further description of the framework design and
the consequences for the learning environment will be ad-
dressed in another paper.

Figure 2: Lingoland (transform mode)

7. Concluding Remarks
Other approaches and tools address the task of introducing
students to programming through a programmable virtual
world (e.g. Turtle World [6] and Karel the Robot [7]).
However, our approach differs radically in at least five
respects: 1) it is a learning environment created as a profes-
sional multimedia production using different senses, 2) the
notion of “Verfremdung” is used explicitly to differentiate
and integrate the play mode and the transform mode of the
tool, 3) the learning model is explicit in the tool, and it is
changeable, 4) the internal design of the tool is created in
such a way that it is suitable for inspection and modifica-
tion by the students later in their learning process, and 5)
the tool represents in every aspect an outstanding example
of the kind of multimedia productions the students should
be able to create when they graduate.
We suggest a narrative as the framework for learning good
programming practices as well as a specific language (e.g.
Lingo). A popular kind of narrative among students is the
computer game, among which we have chosen the genre
adventure game. By letting all learning activity relate to the
fictive world, “Lingoland”, and to communication with its
inhabitants, the “Lingolanders”, we hope to ignite the ini-
tial spark of interest of the student. We also hope to keep
down frustrations of the student by three main ingredients:

1) a reasonably interesting learning environment without
the hassles and hazards of most compilers and program-
ming frameworks, which in itself demonstrates the type of
media applications the students are expected to produce;
2) smooth and quick transitions between the play and trans-
form modes gives the student immediate feed-back to every
programming effort and supports commutation as a design
technique;
3) a ”spiral” learning pattern with a bearable learning curve
requiring the student to learn bit by bit.
These are the main reasons we have hopes for Lingoland as
a learning environment for programming courses offered to
multimedia students with a liberal arts background.
Although Lingoland is not fully completed, the environ-
ment has been used with success for two years in an intro-
ductory object-oriented programming course for multime-
dia students. Also, the environment has been tested with a
group of multimedia educators from community colleges.
The reaction from both groups was very positive and en-
couraging. A more formal evaluation of the environment is
planned.
Lingoland and various documents related to the system is
available on the web: www.daimi.au.dk/lingoland/.

8. Acknowledgements
We thank IT University West for financial support.

References
[1] Andersen, P. Bøgh (forthcoming). Acting Machines.

To appear in Gunnar Liestøl et al. (eds.): Innovations
– Media, Methods and Theories. Cambr., Mass: MIT
press.

[2] Bennedsen, J., Teaching Java To Liberal Arts Stu-
dents, work in progress

[3] Brecht, B. (1960). Om Tidens Teater (Schriften zum
Theater). Gyldendal: Copenhagen. In danish.

[4] Guzdial, M. & E. Soloway (2002). Teaching the Nin-
tendo Generation to Program. Communication of the
ACM (4), 2002, pp. 17-21.

[5] Kay, A. & A. Goldberg (1977). Personal dynamic
media, IEEE Computer (3), 1977, pp. 31-41.

[6] Papert, S. (1980). Mindstorms: Children, Computers
and Powerful Ideas. Basic Books: New York.

[7] Pattis, R. E (1995), Karel the Robot, John Wiley &
Sons, Inc. ,0-471-59725-2

[8] Qvortrup, L. (1998). Det hyperkomplekse samfund
(The hyper complex society). Gyldendal: Copenhagen.
In danish.

